Datasheet

SHF C642 A

60 GHz T-Flip-Flop (TFF)

1:2 Frequency Divider
Description

The SHF C642 A is a T-Flip-Flop (TFF) module capable of broadband operation up to 60 GHz using a sinusoidal input signal. A frequency of half the input frequency is provided at the outputs. It offers high quality output signals together with a compact size and ease of operation.

Features

- Broadband operation up to 60 GHz
- Two differential output ports with 90° phase shift between the outputs
- 700 mVpp single ended output swing
- Single ended or differential operation (either In or In! or both can be used)

Applications

- 100G Ethernet development and prototyping
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel®
- Broadband test and measurement equipment

Block Diagram

![Block Diagram of SHF C642 A TFF Module]

Accessories

- +5V Power Supply Desktop Adapter
- Functional earth cable → Connection to test setup ground has to be set up first before any other connection to prevent instrument damage!

® Fibre Channel is a registered trademark of the Fibre Channel Industry Association

¹ Mini-USB port is only for service purposes, no USB cable will be provided

SHF reserves the right to change specifications and design without notice – SHF C642 A - V001 – September 28, 2018 Page 2/9
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>mV</td>
<td>V<sub>clk.in</sub></td>
<td></td>
<td></td>
<td>900</td>
<td>Peak-to-Peak</td>
</tr>
<tr>
<td>External DC Voltage on RF Input Ports</td>
<td>V</td>
<td>V<sub>DCin</sub></td>
<td>-6</td>
<td></td>
<td>+6</td>
<td>AC coupled input</td>
</tr>
<tr>
<td>External DC Voltage on RF Output Ports</td>
<td>V</td>
<td>V<sub>DCout</sub></td>
<td>-6</td>
<td></td>
<td>+6</td>
<td>AC coupled output</td>
</tr>
<tr>
<td>DC Supply Voltage</td>
<td>V</td>
<td>V<sub>cc</sub></td>
<td>0</td>
<td></td>
<td>+6</td>
<td></td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input Frequency<sup>2</sup></td>
<td>GHz</td>
<td>f<sub>in,min</sub></td>
<td></td>
<td>1</td>
<td>2</td>
<td>@ 500mV input amplitude, see page 7</td>
</tr>
<tr>
<td>Maximum Input Frequency</td>
<td>GHz</td>
<td>f<sub>in,max</sub></td>
<td>60</td>
<td>62</td>
<td></td>
<td>@ 500mV input amplitude, see page 7</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>mV</td>
<td>V<sub>in</sub></td>
<td>500</td>
<td>600</td>
<td>900</td>
<td>≤ 50GHz<sup>3</sup> @ 50GHz > 50GHz Single ended, peak-to-peak, see page 7</td>
</tr>
<tr>
<td>Output Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>mV</td>
<td>V<sub>out</sub></td>
<td>500</td>
<td></td>
<td>900</td>
<td>Single ended, peak-to-peak, see page 7</td>
</tr>
<tr>
<td>Power Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V</td>
<td>V<sub>cc</sub></td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>mA</td>
<td>I<sub>cc</sub></td>
<td>630</td>
<td></td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>mW</td>
<td>P<sub>d</sub></td>
<td>3150</td>
<td></td>
<td></td>
<td>@ V<sub>cc</sub> = +5V</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>°C</td>
<td>T<sub>ambient</sub></td>
<td>15</td>
<td></td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

² Theoretical limit is DC, practical limit depends on slew rate of input signal

³ corresponds to a maximum sinusoidal input signal of +3dBm
Typical Output Waveforms

The measurements below had been performed using an Agilent 86100B DCA with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The output of the TFF had been connected directly to the DCA input.

Output signal @ f_{out} = 30 GHz

Output signal @ f_{out} = 28 GHz

Output signal @ f_{out} = 25 GHz

Output signal @ f_{out} = 21.5 GHz

Output signal @ f_{out} = 16 GHz

Output signal @ f_{out} = 14 GHz
Output signal @ $f_{out} = 12.5$ GHz

Output signal @ $f_{out} = 8$ GHz

Output signal @ $f_{out} = 0.5$ GHz
Output Signal Timing

The measurements had been performed using an Agilent 86100B DCA with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The output of the TFF had been connected directly to the DCA input. The screenshots shown below describe the phase relation between the 2 differential output signals with its 90° phase shift between output port 1 and output port 2.

Out1 @ $f_{out} = 5$ GHz

Out1 inverted @ $f_{out} = 5$ GHz

Out2 @ $f_{out} = 5$ GHz

Out2 inverted @ $f_{out} = 5$ GHz
Typical Results

Input Sensitivity

Output Voltage

SHF reserves the right to change specifications and design without notice – SHF C642 A - V001 – September 28, 2018 Page 7/9
Outline Drawing – Module

#### Port	Connector
In | 1.85mm (V) female
In | 1.85mm (V) female
Out1 | 2.92mm (K) female
Out1 | 2.92mm (K) female
Out2 | 2.92mm (K) female
Out2 | 2.92mm (K) female

All dimensions are in mm.
All dimensions are in mm.