

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf-communication.com Web: www.shf-communication.com

Datasheet SHF C623 A

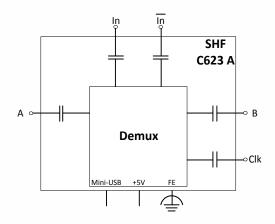
120 Gbps

1:2 Demultiplexer

Description

The SHF C623 A is a ROHS compliant 1:2 demultiplexer (DEMUX) operating at data rates up to 120 Gbps for use in broadband test setups and telecom transmission systems. It is the ideal counterpart to the SHF C603 A (MUX).

One single ended or differential serial data stream is accepted by the demultiplexer and converted into two single ended data signals at a output data rate of 60 Gbps. A single-ended clock signal with a frequency half of the input data rate drives the SHF C623 A. All RF in- and output ports are AC-coupled and internally terminated with 50 Ohm to GND. Unused in- or output ports should be terminated with 50 Ohm.


Features

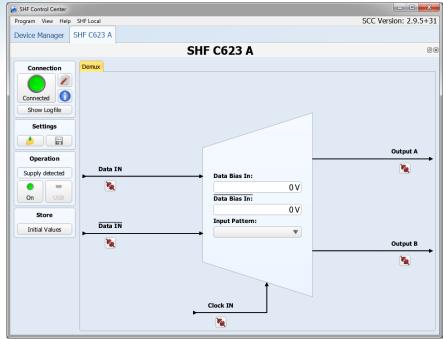
- Broadband operation up to 120 Gbps
- Differential data input
- Data Input Sensitivity <100 mV (single ended)
- Single ended data outputs

Applications

- 100G, 200G, 400G and 1T system evaluation & development
- Telecom transmission
- Broadband test and measurement equipment

Block Diagram

Accessories


- +5V Power Supply Desktop Adapter
- Functional earth cable
- Mini-USB cable

Remote Interface & Software

The DEMUX is controlled by the easy to use software package SHF Control Center (SCC). The DC input threshold voltages (Data / Inverted Data Bias) can be set and are displayed in the graphical user interface (GUI).

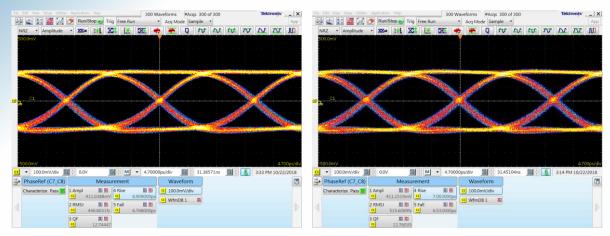
SHF Control Center (SCC)

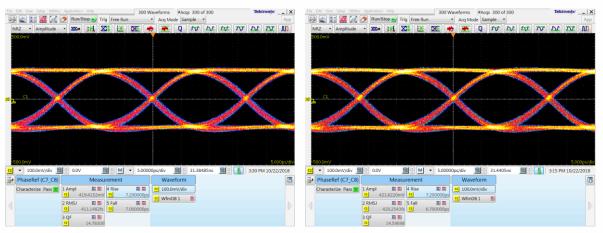
Absolute Maximum Ratings

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Data Input Voltage	mV	V _{data in}			900	Peak-to-Peak
Clock Input Voltage	mV	V _{clk in}			900	Peak-to-Peak
External DC Voltage on Data Input Ports	V	V_{DCin}	-3		+3	AC coupled input
External DC Voltage on Clock Input Port	V	V_{DCin}	-6		+6	AC coupled input
External DC Voltage on RF Output Ports	V	V _{DCout}	-6		+6	AC coupled output
DC Supply Voltage	V	V _{cc}	0		+6.0	

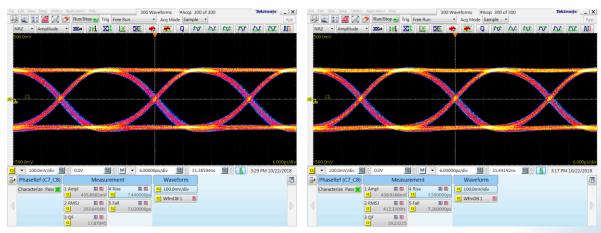
Specifications

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Minimum Input Data Rate	Gbps	R _{in,min}			10	
Maximum Input Data Rate	Gbps	$R_{\text{in,max}}$	120			
Data Input Voltage	mV	V _{data} in		400	800	Eye Amplitude; Single-ended
Data Input Sensitivity	mV	V _{data} in	100 50			> 80 Gbps ≤ 80 Gbps Eye height; Single-ended; On scope display
Min. Clock Input Frequency	GHz	f _{in,min}			5	
Max. Clock Input Frequency	GHz	f _{in.max}	60			
Clock Input Voltage	mV	V _{clk in}	550 400		800 800	> 100 Gbps ≤ 100 Gbps Peak-to-Peak
Output Parameters						
Output Amplitude	mV	V _{out}	350	400		Eye Amplitude; Single-ended
Rise / Fall time	ps	t _r /t _f		7	9	20 % / 80 %; On scope display
Output Jitter, RMS value ¹	fs	J_{rms}		400	650	
Power Requirements						
Supply Voltage	V	V _{cc}	+5	5.2	+5.5	2.5 x 0.7 mm DC Power Jack
Supply Current	mA	l _{ee}		830	950	
Power Dissipation	mW	P_{d}		4150		@ V _{CC} = +5V
Conditions						
Operating Temperature	°C	T _{ambient}	15		35	


SHF reserves the right to change specifications and design without notice – SHF C623 A - V001 – November 09, 2018 Page 4/9


Typical Output Eye Diagrams

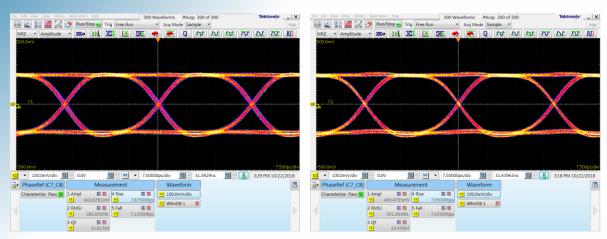
The measurements below had been performed using a SHF 603 A MUX (PRBS 2³¹-1) and a Tektronix DSA8300 with Phase Reference Module (82A04B) and 70 GHz Sampling Head (80N01). The outputs of the demultiplexer module had been connected by 10 dB attenuators to the DSA input.


Out A @ 64 Gbps Output Bitrate

Out B @ 64 Gbps Output Bitrate

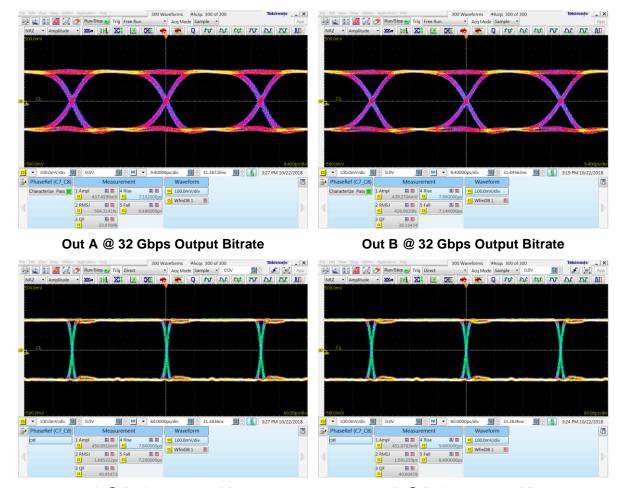
Out A @ 60 Gbps Output Bitrate

Out B @ 60 Gbps Output Bitrate


Out A @ 50 Gbps Output Bitrate

Out B @ 50 Gbps Output Bitrate

 $SHF\ reserves\ the\ right\ to\ change\ specifications\ and\ design\ without\ notice-SHF\ C623\ A\ -\ V001-November\ 09, 2018\ Page\ 5/9$

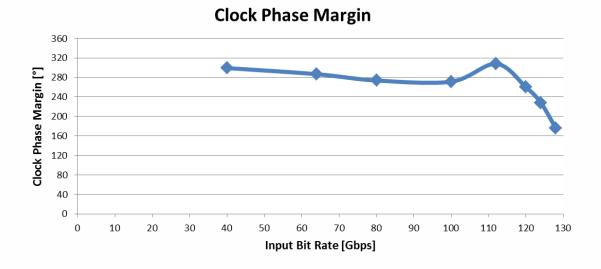


Out A @ 40 Gbps Output Bitrate

Out B @ 40 Gbps Output Bitrate

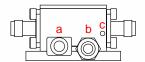
Out A @ 5 Gbps Output Bitrate

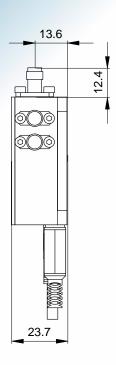
Out B @ 5 Gbps Output Bitrate

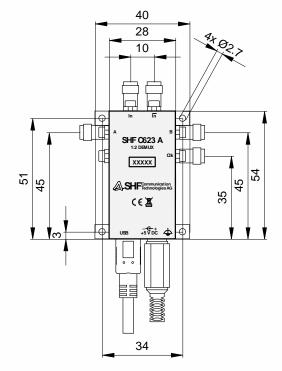


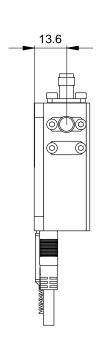
Typical Performance

The measurements shown below had been performed using a SHF 603 A MUX (PRBS 2³¹-1), a SHF 11104 A Error Analyzer, a Tektronix DSA8300 with Phase Reference Module (82A04B) and 70 GHz Sampling Head (80N01) to determine the eye height and jitter contribution of the input signal. In case of the sensitivity measurement the input signal had been reduced until a BER limit of <10⁻⁹ was achieved. For the clock phase margin measurement, an input signal with an eye height of 100 mV has been applied and the phase of the clock signal was varied until the BER reached the 10⁻⁹ limit.

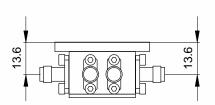


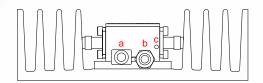


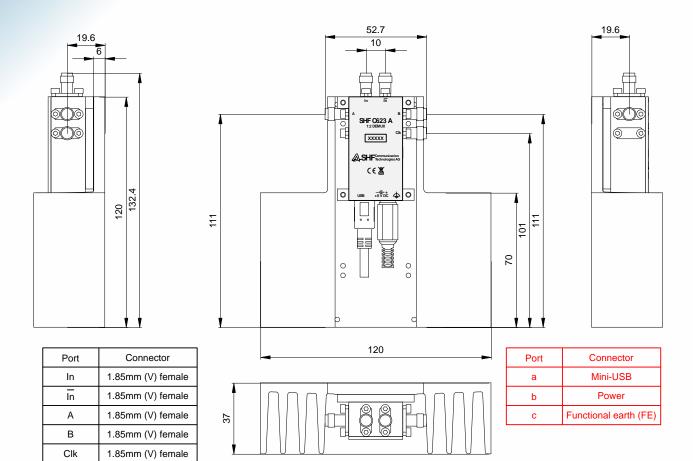




Outline Drawing – Module




Port	Connector	
In	1.85mm (V) female	
<u>–</u> In	1.85mm (V) female	
А	1.85mm (V) female	
В	1.85mm (V) female	
Clk	1.85mm (V) female	



Port	Connector
а	Mini-USB
b	Power
С	Functional earth (FE)

Outline Drawing – Module with Heat Sink

