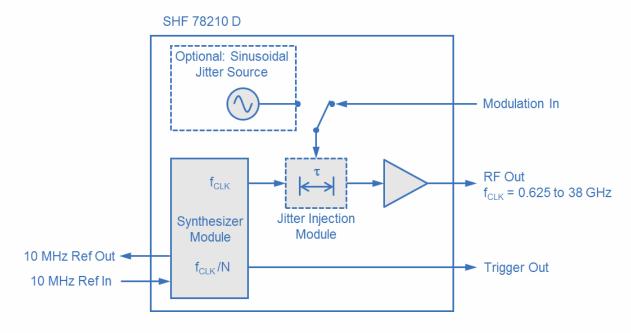

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf.de • Web: http://www.shf.de

Datasheet SHF 78210 D Synthesized Clock Generator

Description


The Synthesized Clock Generator SHF 78210 D is designed to provide our BERT system customers with a suitable internal clock source at reasonable cost. It is a field replaceable plug-in module which needs to be installed in an SHF mainframe. Together with other plug-in modules from this instruments series, a modular and scalable measurement system can be put together.

It features a wide frequency range from 0.625 to 38 GHz, a large output power range variable from -10 dBm to +8 dBm in 0.1 dB steps and it generates low jitter clock signals. For frequencies above 10 GHz, additional band-pass filtering ensures low harmonic levels. Up to 10 GHz, short rise time clock signals are generated in a trade-off for increased levels of higher-order harmonics.

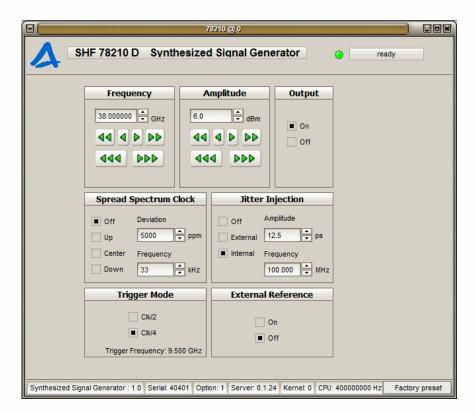
The **jitter injection** functionality is integrated for jitter stress test applications. Arbitrary jitter types may be applied to the clock signal using an external signal source, enabling various test scenarios such as data protocol compliance testing. An optional internal jitter source provides sinusoidal jitter from 0.5 to 400 MHz with variable jitter amplitude.

An additional **trigger output** provides a trigger signal whose frequency can be switched to a quarter or half the output frequency. The trigger remains jitter-free even if jitter injection is used.

Block Diagram

Features

- Output clock frequency ranges from f_{CLK} = 0.625 to 38 GHz with 1 kHz resolution
- Output power adjustable from –10 to +8 dBm with 0.1 dB resolution
- External jitter modulation
- Supports three spread-spectrum clocking (SSC) modes
- 10 MHz reference input and output for phase locking to other instruments
- · Remote programming interface for automated measurements



Ease of Use

The SHF 78210 D is operated inside an SHF mainframe and controlled by an external computer. Every system comes along with the intuitive, easy to use BERT Control Center software (BCC). The BCC provides the user friendly interface for changing the device parameters.

Additionally, the instrument may be programmed remotely over the Ethernet connection for automated tests and measurements. Please refer to the SHF BERT Programming Manual.

Note that SHF also offers the compact standalone Synthesized Clock Generator SHF 78120 B. Please visit www.shf.de for further details.

Graphical User Interface

Options

Option ISJ: Internal Sinusoidal Jitter Source

Several data communication standards require jitter tolerance and jitter transfer testing for sinusoidal jitter over a specified jitter frequency range. The optional internal sinusoidal jitter source allows stress tests for jitter frequencies ranging from 0.5 to 400 MHz. Jitter amplitudes up to 50 ps may be generated. The jitter amplitude is calibrated depending on the jitter frequency and on the clock frequency.

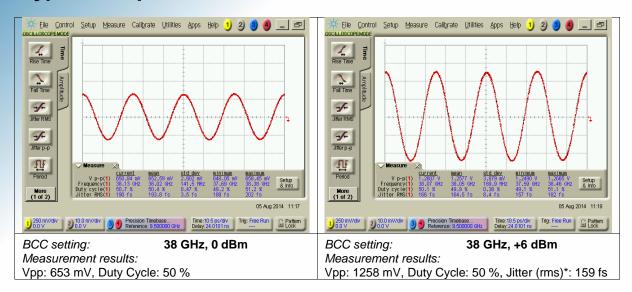
Specifications

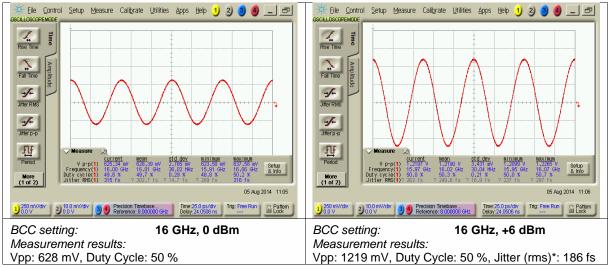
Parameter	Symbol	Unit	Min.	Тур.	Max.	Comment
Clock Output (RF Out)						
Operating Frequency	f _{CLK}	GHz	0.625		38	
Frequency Resolution		kHz	1			
Frequency Accuracy		ppb	-250		250	Using internal reference
Frequency Stability		ppb	– 50		+50	Ambient temperature 21°C
Frequency Stability Aging		ppb	-300		+300	per year
Output Power Level	P _{out}	dBm	-10		+8	
Output Power Resolution		dB	0.1			
Output Power Accuracy		dB	-1		1	Ambient temperature 21°C
Output Power Temperature Drift		dB/°C			0.1	
Harmonics/Spurious Signals		dBc			-20	For f _{CLK} ≥ 10 GHz
Phase Noise		dBc/Hz		-85 -95 -80 -100		f _{CLK} = 10 GHz 1 kHz offset 10 kHz offset 100 kHz offset 1 MHz offset
Jitter (RMS)	J_{RMS}	fs			400	For f _{CLK} ≥ 10 GHz; On scope display (not deconvolved) ¹
Output Impedance		Ω		50		
Connector						1.85 mm (V) male
Parameter	Symbol	Unit	Min	Typ	May	Comment

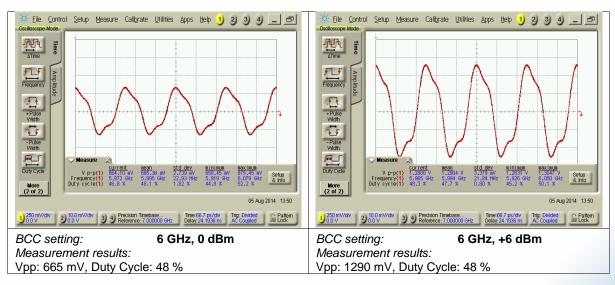
Parameter	Symbol	Unit	Min.	Тур.	Max.	Comment
Trigger Out						
Frequency		GHz	0.15625		19	
Output Amplitude		mVpp	400		1000	
Output Impedance		Ω		50		
Connector						SMA female

Option ISJ: Internal Sinusoidal Jitter Injection				
Jitter Frequency	MHz	0.5	400	
Jitter Amplitude	ps	0	50	

¹ Measured with Agilent 86100A, 70 GHz sampling head and precision time base triggered by Trigger Output.

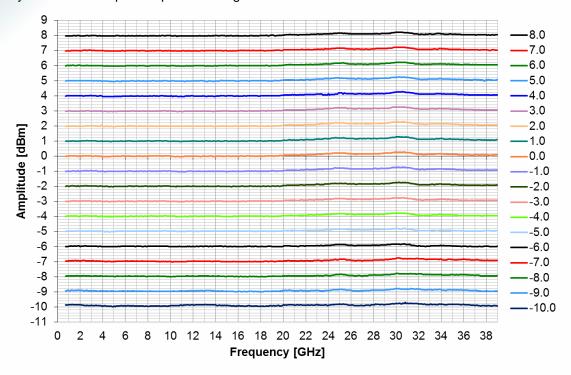

External Jitter Injection						
Modulation Frequency		MHz	0.5		1000	
Modulation Amplitude		mVpp	0		1200	
Jitter Amplitude		ps	0		50	Peak-to-peak
Input Impedance		Ω		50		
Connector						SMA female
Spread Spectrum Clocking						
Modulation Frequency		Hz	10		100 k	
Deviation		ppm	0		20,000	Up/down/center
10 MHz Ref Input						
Reference Frequency	f _{ref}	MHz		10		
Amplitude	101	Vpp	0.2		3.3	
Input Impedance		Ω		50		
Connector						SMA female
			2			
10 MHz Ref Output (using in	ternal refe		ting) ²			
Reference Frequency		MHz		10		
Amplitude		Vpp			0.8	
Output Impedance		Ω		50		
Frequency Accuracy		ppb	-250		250	
Frequency Stability		ppb	-50		+50	Ambient temperature 21°C
Frequency Stability Aging		ppb	-300		+300	per year
Connector						SMA female
General						
Power Consumption		W			25	Power supplied by SHF Mainframe
Weight		kg		4		
Operating Temperature		°C	10		35	Ambient temperature


² The specifications in this datasheet are only valid if the internal reference is activated. If the external reference setting is activated the signal at Ref In is fed through to Ref Out. In this case the parameters frequency, stability and amplitude depend on the Ref In signal.



Typical Output Waveforms

*Note 1: For improved accuracy, rms jitter measurements have been taken at a finer time resolution than the screenshot.



Note that for clock frequencies above 10 GHz, the signal is band-pass filtered to achieve low harmonics and a nearly pure sine wave. Below 10 GHz, however, the clock signals are amplified with subsequent amplitude clipping to shorten the rise time. In the frequency range below 10 GHz, this generates noticeable higher-order harmonics. The SHF 78210 D is optimized for clock source applications in combination with SHF BERT instruments, where a short rise time is preferred.

Output Amplitude

The following diagram shows typical amplitude measurement results using a power meter connected directly on the RF Out port for power settings from -10 to +8 dBm.

For clock frequencies above 10 GHz, the amplitude value in dBm, P_{dBm} , can be converted from and to V_{pp} using the following equations which are valid in a 50 Ω system:

$$P_{dBm} = 20 \log_{10}(V_{pp}) + 4 \tag{Eq. 1}$$

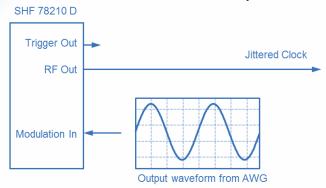
$$V_{pp} = 10^{(P_{dBm}-4)/20}$$
. (Eq. 2)

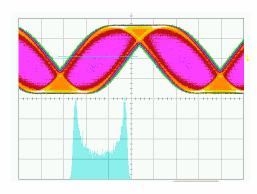
Note that below 10 GHz, the measured V_{pp} will be slightly smaller than the value calculated from (Eq. 2) since the clock signals in that frequency range are square waves rather than single-tone sine waves.

External Jitter Injection

For additional flexibility, arbitrary jitter modulation may be applied to the high-speed clock signal. Jitter is injected by connecting a signal source such as an arbitrary waveform generator to the external modulation input. The maximum jitter amplitude is 50 ps peak-to-peak with a modulation bandwidth of up to 1 GHz. As an example, the jitter amplitude of 50 ps corresponds to a relative jitter amplitude of 1.6 unit intervals (UI) at a bit rate of 32 Gbit/s.

The jitter amplitude is calibrated by measuring the modulation sidebands on a spectrum analyzer.

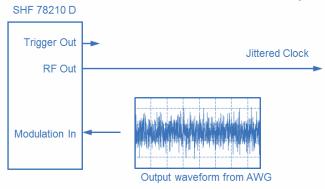


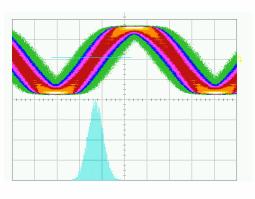

In combination with an SHF Bit Pattern Generator and an Error Analyzer, the SHF 78210 D enables a complete test solution for jitter tolerance tests as required by many telecommunication standards such as 100G Ethernet and 40 GBit/s OTN, FibreChannel, InfiniBand®, PCI Express®, and Serial ATA. For further details please refer to the SHF application note "Jitter Injection using the Multi- Channel BPG", available online at www.shf.de.

Typical Jittered Signal Waveforms

The external modulation input can be driven by a function generator such as the Agilent 332XX family of function / arbitrary waveform generators (AWG). The waveform characteristics of the AWG determine the jitter type.

Sine Wave on Modulation Input




Sinusoidal jitter on 28 GHz clock.

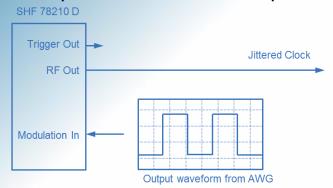
AWG Setting

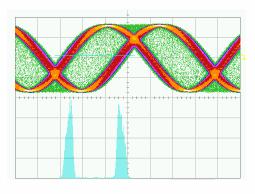
Waveform Sine wave Frequency 100 kHz Amplitude 70 mVpp

Gaussian-Distributed Noise on Modulation Input

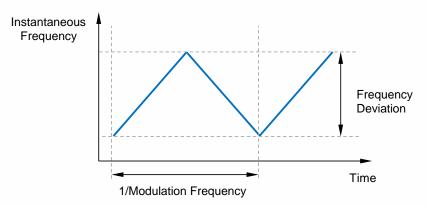
Random jitter on 28 GHz clock.

AWG Setting


Waveform: Noise Amplitude: 70 mVpp


[®] *InfiniBand* is a registered trademark of the InfiniBand Trade Association. *PCI Express* is a registered trademark of Peripheral Component Interconnect Special Interest Group (PCI-SIG).

Square Waveform on Modulation Input


Peak-to-peak jitter on 28 GHz clock.

AWG Setting

Waveform: Square Frequency: 100 kHz Amplitude: 70 mVpp

Spread Spectrum Clocking

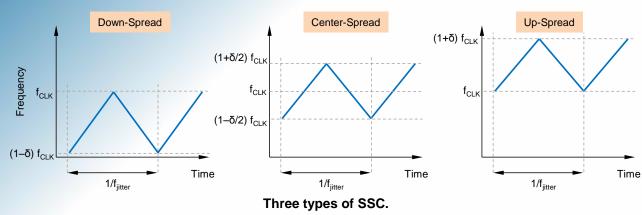
To meet the regulatory demands of electromagnetic interference several high-speed bus systems use a spread spectrum clocking (SSC) method. When SSC is enabled, the instantaneous frequency of the clock signal varies periodically with time by a small amount, i.e. the clock signal is frequency-modulated. The figure below illustrates the SSC frequency modulation with a triangular shape.

The principle of SSC is the periodic frequency modulation of a clock signal.

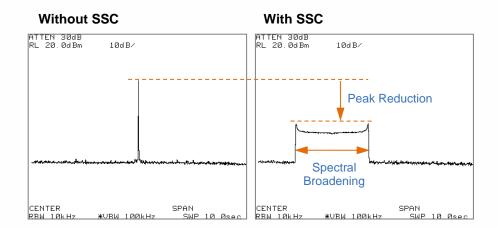
The key SSC parameters are the following:

f_{CLK} original clock frequency without SSC

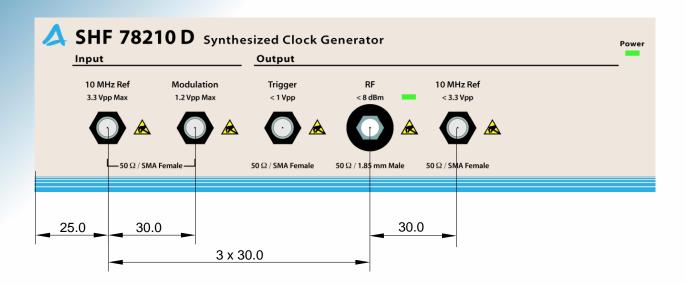
δ relative frequency deviation (often given in percent or ppm, parts per million)


f_{iitter} modulation frequency.

The parameters are directly accessible in the BERT Control Center software GUI or through remote programming.


Depending on the relative position of the clock frequency and the frequency deviation, SSC can be classified into three types: down, center, and up-spread. The figure below illustrates the three configurations.

SSC, effectively, broadens the spectral peak of a clock signal so that the maximum of the power spectral density is reduced leading to less radiated emission. This is illustrated in the following spectra measured at the output of the SHF 78210 D for a 25 GHz clock with 30 kHz modulation frequency and 0.5% deviation. Note that SSC does not reduce the total signal power of the clock. Rather, it redistributes the clock's spectral components as shown in the figure below.



SHF 78210 D clock spectrum with and without SSC.

Mechanical Drawing

All dimensions are specified in millimeters (mm).

Input Connectors

Connector Name	Description
10 MHz Ref	External 10 MHz reference input
Modulation	External jitter modulation input

Output Connectors

Connector Name	Description
Trigger	Trigger output
RF	Clock output
10 MHz Ref	10 MHz reference output