

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone +49 30 772051-0 • Fax +49 30 7531078 E-Mail: sales@shf.de • Web: http://www.shf.de

Datasheet SHF 78210 A Synthesized Signal Generator

SHF reserves the right to change specifications and design without notice – SHF 78210 A - V004 – June 12, 2012 Page 1/7

The Synthesized Signal Generator SHF 78210 A was developed to provide our BERT system customers with a suitable internal clock source for their 100G Ethernet test applications, at reasonable cost. With a frequency range from 24 GHz to 32 GHz all bit rates of interest are covered. The output power can be varied between 0 dBm and +6 dBm in 0.1 dB steps.

For measurement purposes, the SHF 78210 A provides a trigger signal at a quarter of the clock output frequency.

Optionally, a jitter injection functionality can be added to the signal generator module. Arbitrary jitter types may be applied to the clock signal using an external signal source, enabling various test scenarios such as serial data protocol compliance testing.

Features

- Output clock frequency ranges from f_{CLK} = 24 to 32 GHz
- Output power adjustable from 0 to +6 dBm in 0.1 dB steps with an accuracy better than 0.1 dB
- Computer controlled
- Integrates seamlessly in the SHF BERT system hardware and software environment
- Operated using the BERT Control Center GUI running on a PC

Options

• Option J1 (Jitter Injection)

Enables injection of arbitrary jitter types by applying an external modulation signal up to 1 GHz bandwidth with a maximum jitter amplitude of 90 ps peak-to-peak. A jitter-free trigger signal is available for measurement and calibration purposes.

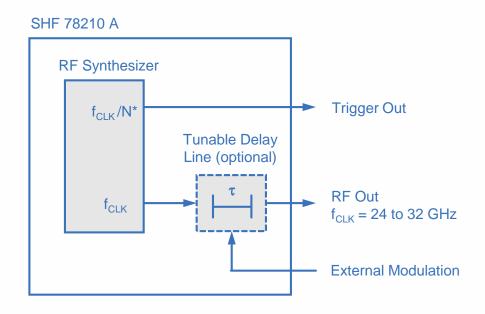
• Option T2 or T4 (Half Clock or Quarter Clock Trigger)

The frequency configuration of the Trigger Out clock may be fixed at either $f_{CLK}/2$ (Option T2 - Half Clock Trigger) or at $f_{CLK}/4$ (Option T4 - Quarter Clock Trigger).

Note that the trigger remains jitter-free even if jitter injection is enabled.

Specifications – SHF 78210 A

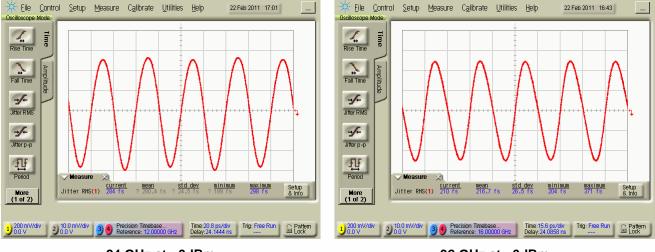
Parameter	Unit	Min.	Тур.	Max.	Comment		
Clock Output (RF Out)							
Operating Frequency	GHz	24		32	f _{CLK}		
Frequency Resolution	MHz		1				
Output Power Level	dBm	0		+6	1.85 mm (V) male		
Spurious Signals	dBc			-20			
SSB Phase Noise	dBc/Hz		tbd				



Trigger Out			
Frequency (Option T2)	GHz	12	16 f _{CLK} /2
Frequency (Option T4)	GHz	6	8 f _{CLK} /4
Output Amplitude	mVpp	550	650 SMA female

Jitter Injection (Option J1)								
Modulation Bandwidth	MHz	0.1		1000				
External Modulation Amplitude	mVpp	0		1000	SMA female			
Jitter Amplitude	ps	0		90	Peak-to-peak			
General								
Weight	kg		3.3					
Dimensions	mm		59x213x 450		w/o Front Panel Connector			
Power Consumption	W		12					
Operating Temperature	°C	10		35				

Block Diagram


* If option T2 is chosen, N=2 (half clock). If T4 is chosen, N=4 (quarter clock).

0(78210 @ 0					
SHF 78210 A Synthesized Signal Generator @ ready							
Frequency	Amplitude	Output					
		On Off					
Factory preset S	Synthesized Signal Generator : 1	.0 Serial: 25689	Option: 0	Server: 0.67	Kernel: 0	CPU: 5160	9600 Hz

Typical Output Signal Waveforms

24 GHz at +6dBm

32 GHz at +6dBm

The SHF 78210 A jitter injection feature is designed to apply arbitrary jitter modulation to the high-speed clock signal. Jitter is injected by connecting a signal source such as an arbitrary waveform generator to the external modulation input. Internally, the time delay of a tunable delay line is modulated. The maximum jitter amplitude is 90 ps peak-to-peak with a modulation bandwidth of up to 1 GHz. As an example, the jitter amplitude of 90 ps corresponds to a relative jitter amplitude of 2.5 unit intervals (UI) at a bitrate of 28 Gbit/s.

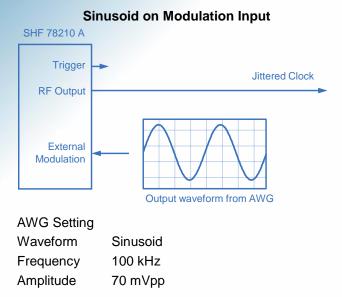
The specifications of the external signal source are given in the table below for sinusoidal jitter injection. Depending on the user's jitter injection requirements, an arbitrary waveform generator may be used for maximum flexibility of the available jitter types. Several examples of jittered clock waveforms using an arbitrary waveform generator are shown in the next section.

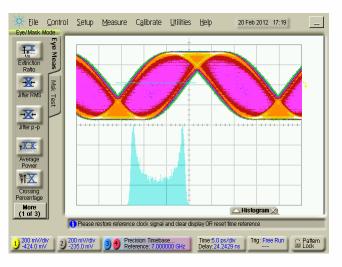
Recommended Minimum Specifications of the External Signal Source Required for Injection of Sinusoidal Jitter

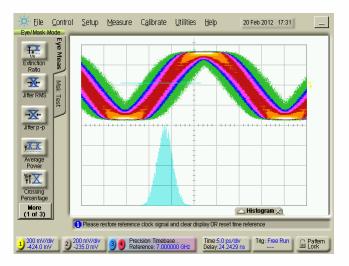
Parameter	Unit	Min.	Тур.	Max.
Frequency Range	MHz	0.1		1000
Amplitude	mVpp	0		1000
Connector Type			SMA	

For jitter calibration purposes, the trigger signal of the SHF 78210 A remains jitter-free even if jitter injection is applied to the RF out signal.

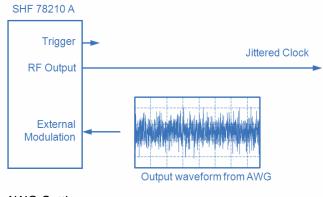
In combination with the SHF bit pattern generator series 1210X A, the SHF 78210 A including the jitter injection feature enables a complete test solution for jitter tolerance tests as required by many telecommunication standards such as 100G Ethernet and 40 GBit/s OTN, FibreChannel, InfiniBand®, PCI Express®, and Serial ATA. For further details please refer to the SHF application note "Jitter Injection using the Multi- Channel BPG", available online at <u>www.shf.de</u>.


[®] *InfiniBand* is a registered trademark of the InfiniBand Trade Association. *PCI Express* is a registered trademark of Peripheral Component Interconnect Special Interest Group (PCI-SIG).


SHF reserves the right to change specifications and design without notice – SHF 78210 A - V004 – June 12, 2012 Page 5/7



The external modulation input can be driven by a function generator such as the Agilent 332XX family of function / arbitrary waveform generators (AWG). The waveform characteristics of the AWG determine the jitter type of the SHF 78210 A.

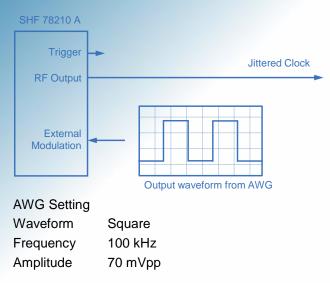


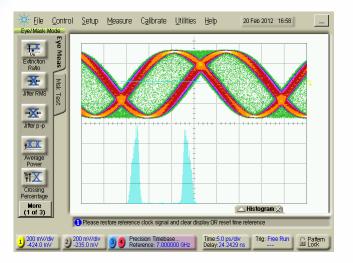
Sinusoidal jitter on 28 GHz clock, jitter amplitude 11 ps peak-to-peak

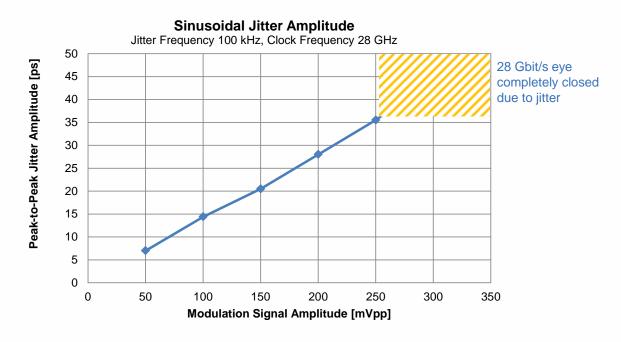
Random jitter on 28 GHz clock, jitter amplitude 1.7 ps rms

Gaussian-Distributed Noise on Modulation Input

AWG Setting Waveform Amplitude


Noise 70 mVpp


SHF reserves the right to change specifications and design without notice – SHF 78210 A - V004 – June 12, 2012 Page 6/7


Square Waveform on Modulation Input

Peak-to-peak jitter on 28 GHz clock, jitter amplitude 11 ps peak-to-peak

As an example, the following diagram shows the peak-to-peak jitter amplitude in ps versus the modulation signal amplitude in mVpp for the special case of sinusoidal jitter of 100 kHz frequency modulated onto a 28 GHz clock using a function generator of the Agilent 332XX family.

