

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

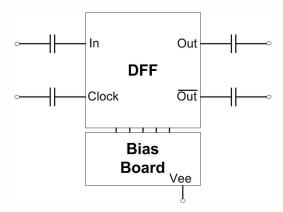
E-Mail: sales@shf.de • Web: http://www.shf.de

Datasheet SHF 631 A 56 Gbps

D Flip Flop (DFF)

Description

The SHF 631 A is a re-timing and re-shaping D Flip-Flop (DFF) module capable of broadband operation up to 56 Gbps. AC-coupled and 50 Ω terminated data and clock inputs ensure proper line termination and uncomplicated application. Optimum bias point for the data input can be set using the potentiometer on the provided bias board.


Features

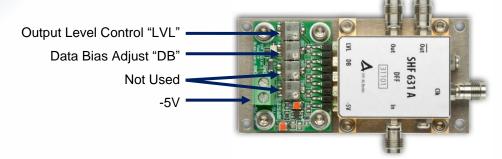
- Broadband operation up to 56 Gbps
- Single ended inputs (data and clock)
- Differential output, 700 mV single ended output swing
- Output Level Control
- Bias Board

Applications

- 100G Ethernet development and prototyping
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel®
- Broadband test and measurement equipment

Block Diagram

[®] Fibre Channel is a registered trademark of the Fibre Channel Industry Association



Bias Board

At delivery, the bias board is mounted on a common base plate, together with the SHF 631 A DFF. When using the bias board only one supply voltage of -5V needs to be applied; all operating voltages will be provided by the bias board.

With the factory settings all bias voltages are set to optimum / maximum output voltage. However, if required the customer can adjust the output level "LVL" and the input data bias "DB" with the appropriate trim potentiometers on the bias board.

For system applications it is possible to remove the bias board. In that case the operating voltages have to be supplied by the customer's circuitry.

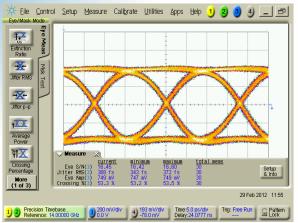
Specifications

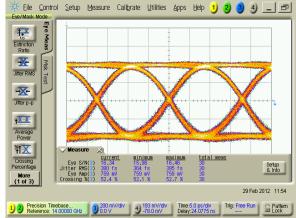
Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Minimum Input Data Rate	Gbps	R _{in,min}		1	2	@ 500mV _{pp} clock input
Maximum Input Data Rate	Gbps	$R_{\text{in,max}}$	56			@ 500mV _{pp} clock input
Data Input Voltage	mV_{pp}	V _{data in}			1000	
Data Input Sensitivity	mV	V _{data in}	100 ¹			Eye Height, see page 8
Clock Input Frequency	GHz	f _{in}	2		56	
Clock Input Voltage	mV_{pp}	V _{clk in}	500 ²		1000	See page 8
Clock Phase Margin ³	0	СРМ	200 160			Up to 50 Gbps, Above 50 Gbps, see page 8
Output Parameters						
Output Amplitude	mV	V _{out}	600	700	900	Single ended, adjustable up to -3dB
Rise / Fall time	ps	t _r /t _f		7	10	20% / 80%
Output Jitter, RMS value ⁴	fs	J_{rms}		400	600	
Power Requirements						
Supply Voltage	V	V _{ee}	-5.2	-5	-4.8	
Supply Current	mA	l _{ee}		250	280	
Power Dissipation	mW	P _d		1250		@ V _{EE} = -5V; incl. Bias Board
Bias Voltages						
Output Level Adjust	V	LVL	-3.3		0	if not used, connect to gnd
Input Data Bias	V	DB	-3.3	-1,65	0	
Conditions						
Operating Temperature	°C	T _{ambient}	15		35	

SHF reserves the right to change specifications and design without notice – SHF 631 A - V003 – August 09, 2013

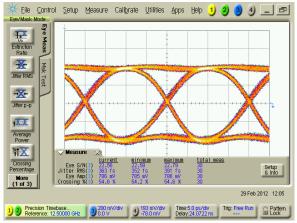
⁴ Test condition: Input Signal Jitter_{RMS} = 230 fs

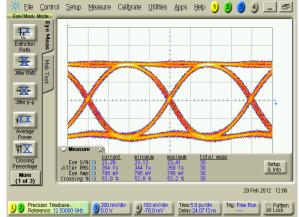
¹ Test criteria: BER<10⁻⁹; to achieve best output eye performance, value should be higher


 $^{^2}$ Test criteria: BER<10 9 ; to achieve best output eye performance, value should be higher

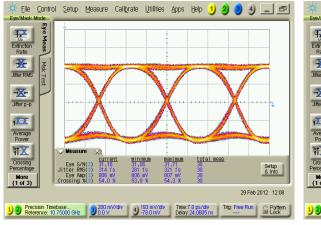

 $Clock\ Phase\ M\ argin\ [deg] = \frac{Phase\ M\ argin\ (measured)\ [ps] + Peak\ -\ Peak\ -\ Peak\ -\ Source\ -\ Jitter\ [ps]}{Eye\ Length\ [ps]} \cdot 360^{\circ}$

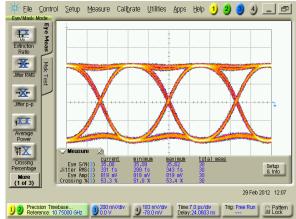
Typical Output Eye Diagrams


The measurements below had been performed using a SHF 12100 A Bit Pattern Generator (PRBS 2^{31} -1, $V_{amplitude} = 350 \text{ mV}$) and an Agilent 86100D Digital Communication Analyzer (DCA) with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The outputs of the DFF module had been connected directly to the DCA input.



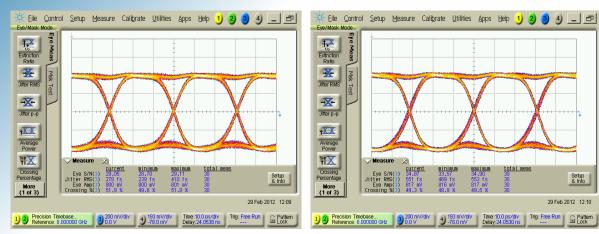
Out @ 56 Gbps


Out! @ 56 Gbps



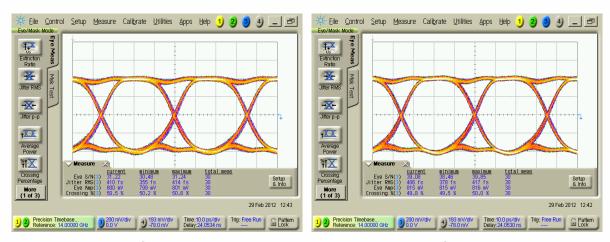
Out @ 50 Gbps

Out! @ 50 Gbps


Out @ 43 Gbps

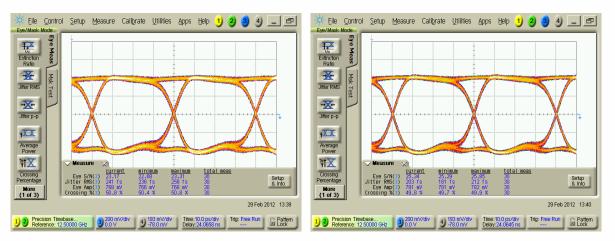
Out! @ 43 Gbps

SHF reserves the right to change specifications and design without notice – SHF 631 A - V003 – August 09, 2013



Out @ 32 Gbps

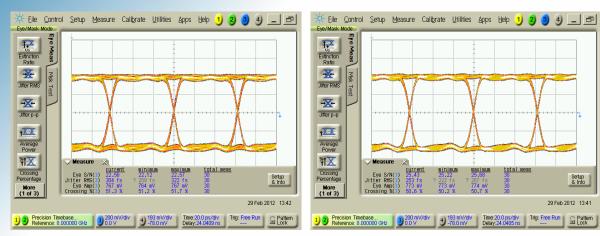
Out! @ 32 Gbps


Setup & Info

29 Feb 2012 12:10

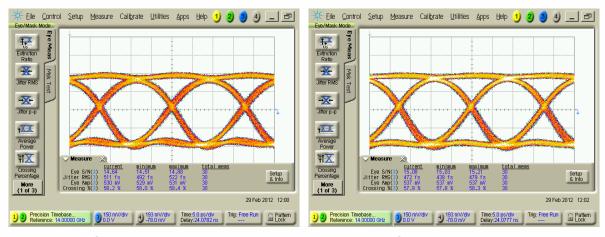
Out @ 28 Gbps

Out! @ 28 Gbps



Out @ 25 Gbps

Out! @ 25 Gbps



Out @ 16 Gbps

Out! @ 16 Gbps

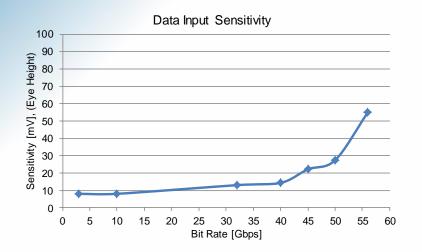
Setup & Info

29 Feb 2012 13:41

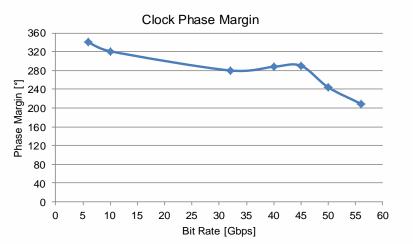
Out @ 56 Gbps, Level = -3dB

Out! @ 56 Gbps, Level = -3dB

Out @ 56 Gbps, t_r/t_f


Out! @ 56 Gbps, t_r/t_f

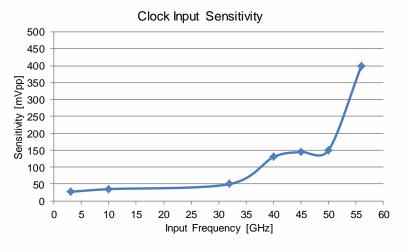
Typical Results


The measurements shown below had been performed using a SHF 12103 A Bit Pattern Generator (PRBS 2³¹-1), a SHF 11100 A Error Analyzer, an Agilent 86100B Digital Communication Analyzer with Precision Time Base Module (86107A) and a 70 GHz Sampling Head (86118A) to determine the eye height and jitter contribution of the input signal.

Measurement Conditions:

Clock Input Amplitude: 500mV_{pp} Clock Input Jitter: 230fs

BER-Limit: 10⁻⁹



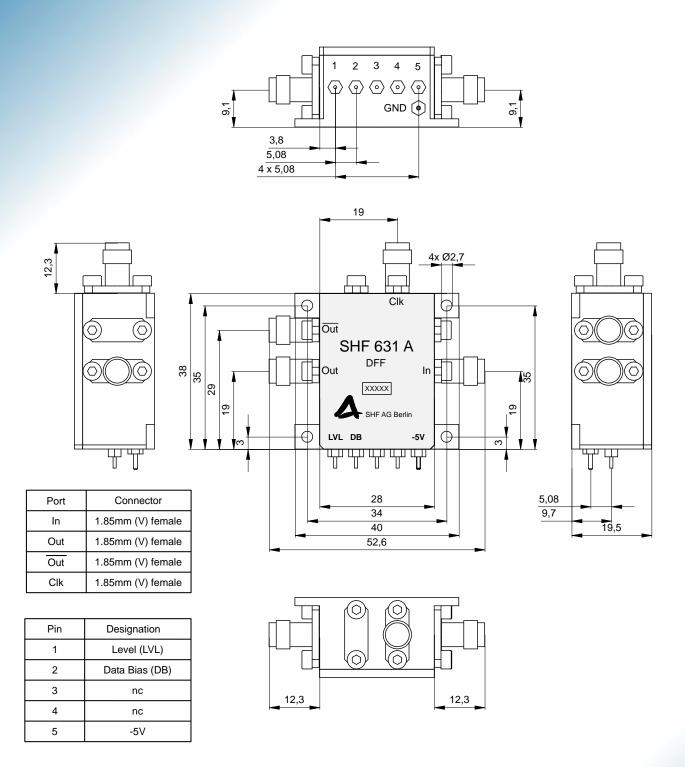
Measurement Conditions:

Data Input Eye Height: 100mV Clock Input Amplitude: 500mV_{pp}

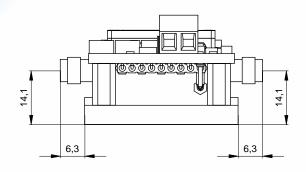
Clock Input Jitter: 230fs

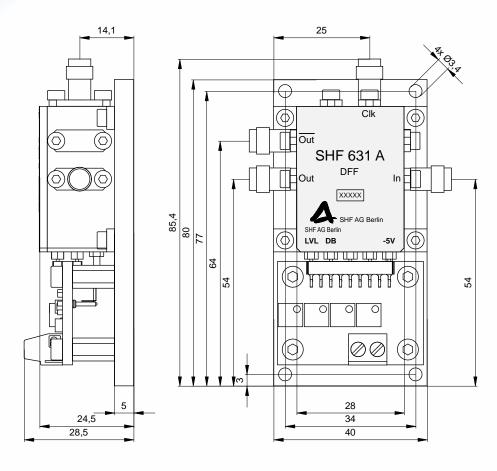
BER-Limit: 10⁻⁹

Measurement Conditions:


Data Input Eye Height: 100mV Clock Input Jitter: 230fs

BER-Limit: 10⁻⁹


Outline Drawing – Module



Outline Drawing - "Module + Bias Board"- Assembly

Port	Connector	
In	1.85mm (V) female	
Out	1.85mm (V) female	
Out	1.85mm (V) female	
Clk	1.85mm (V) female	

