

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf.de • Web: http://www.shf.de

Preliminary Datasheet SHF 615 A

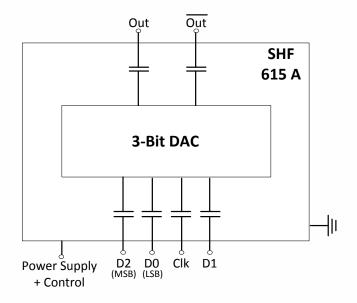
60 GBaud 3-Bit DAC

Description

The SHF 615 A is a 3-Bit Digital-to-Analog Converter (DAC) operating at symbol rates up to 60 GBaud for use in broadband test setups and telecom transmission systems. Up to three single ended serial data streams are accepted by the DAC and converted into one differential 8-level data signal. By using two input ports only it is possible to generate 4-level output signals. A single ended clock signal with the same frequency as the data rate drives the SHF 615 A.

For data regeneration purposes all input data signals are re-sampled to mitigate any signal impairments resulting e.g. from long cables. Therefore, it becomes possible to place the DAC very close to the DUT.

All RF input and output ports are AC-coupled.


Features

- Broadband operation up to 60 GBaud
- Differential data output, 4.8 V differential output swing (2.4V in single-ended operation)
- Single-ended clock and data inputs
- Latched input ports
- Output level control

Applications

- 100, 200, 400 Gbps and 1 Tbps system evaluation & development
- · Broadband test and measurement equipment
- PAM-N, OFDM, Advanced Modulation Experiments

Block Diagram

Ease of Use

In addition to the DAC itself, the power supply, USB cable, head sink and control software are a complementary part of each delivery. It is recommended to use the DAC only with the delivered power supply module.

The easy to use software package, the SHF 600 Series Control, is the most convenient way to control the DAC. The software reads the individual calibration tables of the DAC and sets the contribution of the bias voltages accordingly. The amplitude of the individual eye openings can be set and is displayed in the graphical user interface (GUI). The enables the user to generate a perfect signal just by a few intuitive clicks. The control software for other operating systems is available on request.

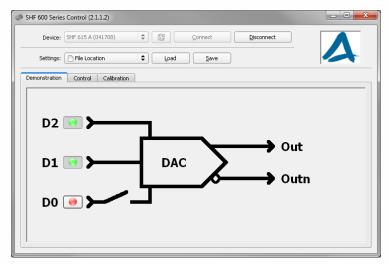


Fig. 2: "SHF 600 Series Control" - GUI

The heat sink can be removed by the customer. In this case it is required to provide other cooling measures to ensure that the maximum case temperature specified on page 4 will not be exceeded.

Absolute Maximum Ratings

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Data Input Voltage	mV_{pp}	V _{data in}			900	
Clock Input Voltage	mV_{pp}	V _{clk in}			900	
External DC Voltage on RF Input Ports	V	V_{DCin}	-10		+10	AC coupled input
External DC Voltage on RF Output Ports	V	V_{DCout}	-10		+10	AC coupled output
DC Supply Voltages (DAC-Module)	V	V _{ee} V _{cc}	-5.0 0		0 +6.0	

Specifications

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Data Input Voltage	mV_{ampl}	V _{data in}	300		800	500 mV recommended
Clock Input Frequency	GHz	f _{in}	1		60	
Clock Input Voltage	mV_{ampl}	V _{clk in}	300		800	500 mV recommended
Output Parameters						
Minimum Output Data Rate	GBaud	$R_{\text{out,min}}$			1	
Maximum Output Data Rate	Gbaud	R _{out,max}	60	62		
Output Amplitude	mV _{ampl}	V _{out}	2200	2415		Single ended, full scale, adjustable up to -6dB, see page 5
Rise Time ¹	ps	t _r		8	10	20% / 80%
				12	13	10% / 90%
Fall Time ¹	ps	t _f		6 9	8 11	20% / 80% 10% / 90%
Differential Output Skew	ps	t _{skew}		±1	±2	

¹ Refers to full scale output swing (measured with a 0101-pattern, phase-synchronized at all data input ports)

Power Requirements (incl. Power Supply)						
Supply Voltage	V	V _c	+11.5	+12	+12.5	
Supply Current	mA	Ic		650		
Power Dissipation	W	P _d		7.8		@ V _C = +12V
Power Requirements (DAC-Module only)						
Supply Voltage	V	V _{ee}	-4.6	-4.4	-4.3	
Supply Current	mA	l _{ee}		1050	1150	
Supply Voltage	V	V _{cc}	+5.2	+5.3	+5.5	
Supply Current	mA	I _{cc}		320	350	
Power Dissipation	W	P _d		6.3		@ $V_{EE} = -4.4V$, $V_{CC} = +5.3V$
Conditions						
Case Temperature ²	°C	T _{case}	10		45	

Typical Output Amplitudes

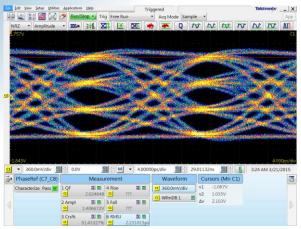
Below mentioned values assume no attenuation to be set in the control software. The output amplitude of the DAC can be reduced by 0 to -6 dB by making the appropriate setting in the control software.

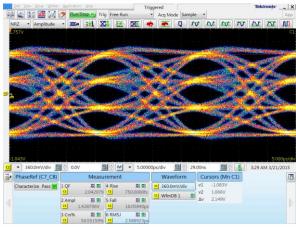
Input D2	Input D1	Input D0	Typical Output Amplitude [mV]
-	-	On	345
-	On	-	690
On	-	-	1380

The typical output amplitude of a multilevel signal can be calculated by accumulating the typical output amplitudes of all applied input ports of the DAC as shown in the table above. Thus the full scale output swing (all inputs active) accumulates as follows:

On On	On	2415
-------	----	------

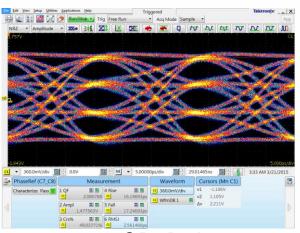
² Tr / Tf of the output data signal can be slightly decreased by applying additional cooling measures like heat sinks or cooling fans.

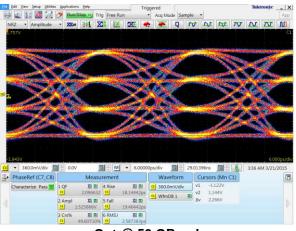




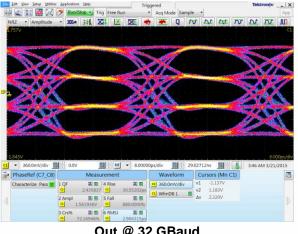
Typical Output Eye Diagrams

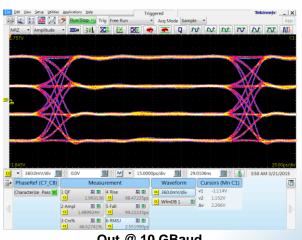
The measurements below had been performed using a SHF 12104 A Bit Pattern Generator (PRBS 2³¹-1) and a Tektronix DSA 8300 Digital Serial Analyzer (DSA) with Phase Reference Module (82A04B-60G) and 70 GHz Sampling Module (80E11). The outputs of the DAC module had been connected directly to the DSA input with a 20 dB attenuator.


4-Level Output Signal Measurement



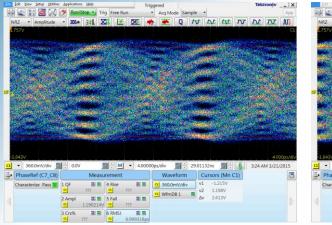
Out @ 62 GBaud


Out @ 60 GBaud

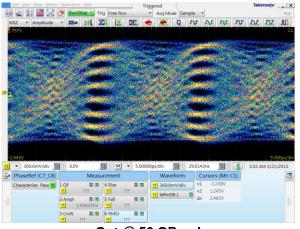

Out @ 56 GBaud

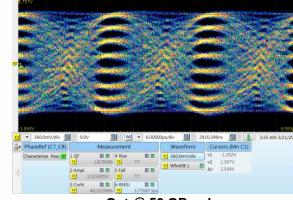
Out @ 50 GBaud

Out @ 32 GBaud


Out @ 10 GBaud

SHF reserves the right to change specifications and design without notice - SHF 615 A - V001 - March 20, 2015

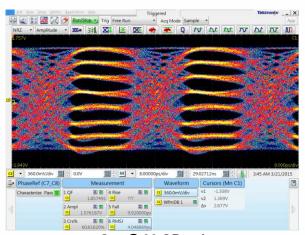

8-Level Output Signal Measurement

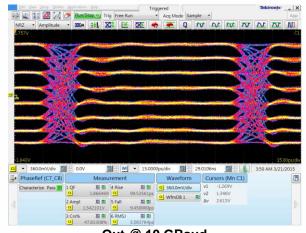


| Triggered | Tektronix | 2| 2 | 3| 1 ☐ • 360.0mV/div ☐ PhaseRef (C7_C8)

Out @ 62 GBaud

Out @ 60 GBaud

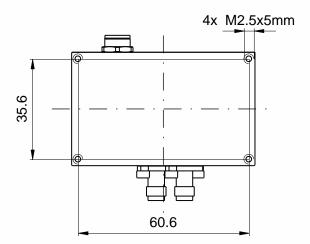


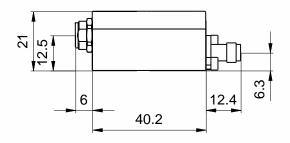


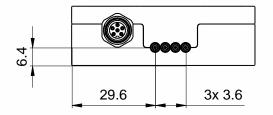
Edit Siev Steip Beller Spread Trig Free Run

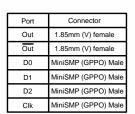
Out @ 56 GBaud

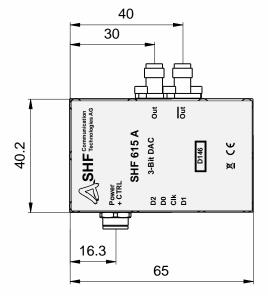
Out @ 50 GBaud

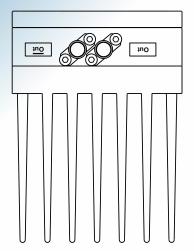

Out @ 32 GBaud


Out @ 10 GBaud

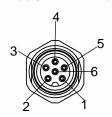


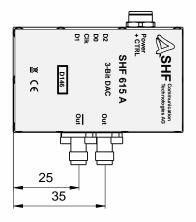



Outline Drawing - Module

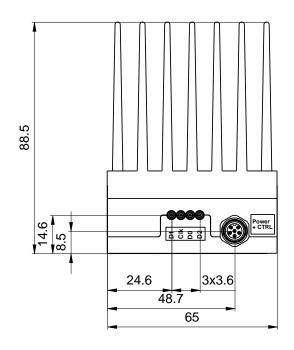


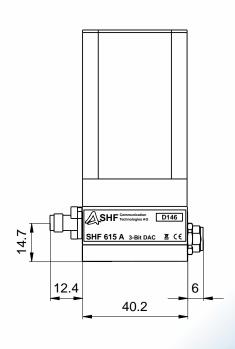



All dimensions in mm.



Outline Drawing - Module with Heat Sink





Port	Connector
Out	1.85mm (V) female
Out	1.85mm (V) female
D0	MiniSMP (GPPO) Male
D1	MiniSMP (GPPO) Male
D2	MiniSMP (GPPO) Male
Clk	MiniSMP (GPPO) Male

Power Supply & Control (I2C-Bus)				
Pin	Colour	Designation		
1	brown	SCL		
2	white	Vcc		
3	blue	GND		
4	black	Vee		
5	grey	SDA		
6	pink	GND		

All dimensions in mm.

