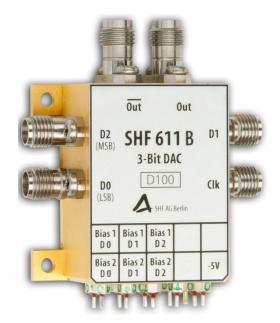


SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany


Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf.de • Web: http://www.shf.de

Preliminary Datasheet SHF 611 B

32 GBaud 3-Bit DAC

Description

The SHF 611 B is a 3-Bit Digital-to-Analog Converter (DAC) operating at data rates up to 32 GBaud for use in broadband test setups and telecom transmission systems. Three 32 Gbps single ended serial data streams are accepted by the DAC and converted into one differential 8-Level data signal at a nominal output data rate of 32 GBaud. By using only two input ports it is possible to convert two single ended input data serial data streams into a 4-Level output signal. A single ended clock signal (nominally 32 GHz) with the same frequency as the output data rate drives the SHF 611 B.

For data regeneration purposes all input data signals are re-timed by the clock signal. All RF input and output ports are AC-coupled. Unused in- and output ports should be terminated.


Features

- Broadband operation up to 32 GBaud
- Differential data output, 750 mV single ended output swing
- Single ended clock and data inputs
- Latched input ports
- Output level control
- Bias board

Applications

- 100G Ethernet development and prototyping
- 200G and 400G systems
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel®
- Broadband test and measurement equipment

Block Diagram

[®] Fibre Channel is a registered trademark of the Fibre Channel Industry Association

Bias Box

At delivery, the bias box SHF 88120 A is mounted on a common base plate, together with the SHF 611 B 3-Bit DAC (Fig.1). All bias voltages are provided by this bias box which is controlled by a PC via a USB interface. The easy to use software package is a complementary part of each delivery. For system applications it is possible to remove the bias board. In that case the operating voltages have to be supplied by the customer's circuitry.

The Bias Box can only be used with the delivered power supply. Using other power supplies can damage the Bias Box.

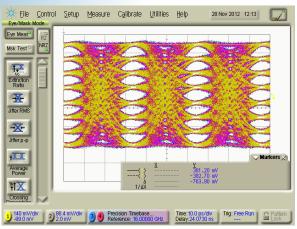
Fig. 1: "SHF 611 B + Bias Box"-Assembly

SHF 600 Series Control - Software

At delivery, the software package including a 1.5m USB cable will be provided.

Fig. 2: "SHF 600 Series Control" - GUI

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment	
Input Parameters							
Data Input Voltage	mV	V _{data in}	300	500	1000	Clock input amplitude = 500mV	
Clock Input Frequency	GHz	f _{in}	1		32		
Clock Input Voltage	mV_{pp}	V _{clk in}	300	500	1000	Data input amplitude = 500mV	
Output Parameters							
Minimum Output Data Rate	GBaud	R _{in,min}			1		
Maximum Output Data Rate	GBaud	R _{in,max}	32				
Output Amplitude	mV	V _{out}	650	770	900	Single ended, full scale, adjustable up to -6dB, see table on page 5	
Power Requirements (incl. Bias Box)							
Supply Voltage	V	V _{ee}	+11.75	+12	+12.25		
Supply Current	mA	l _{ee}		220	250		
Power Dissipation	W	P_{d}		2.7			
Power Requirements (DAC-Module only)							
Supply Voltage	V	V _{ee}	-5.2	-5	-4.8		
Supply Current	mA	l _{ee}		350	380		
Power Dissipation	W	P _d		1.8		@ V _{EE} = -5V	
Bias Voltages							
Bias Adjust 1 for D0, D1 & D2	V	V _{Bias1}	-3.3		0		
Bias Adjust 2 for D0, D1 & D2	V	V _{Bias2}	-3.3		0		
Conditions							
Case Temperature	°C	T _{case}			45		


Typical Output Amplitude Values & Spread								
Input D2	Input D1	Input D0	Minimum Output Amplitude [mV]	Maximum Output Amplitude [mV]				
-	-	On	103	115				
-	On	-	217	243				
-	On	On	320	360				
On	-	-	433	485				
On	-	On	525	590				
On	On	-	615	690				
On	On	On	720	820				

Typical Output Eye Diagrams

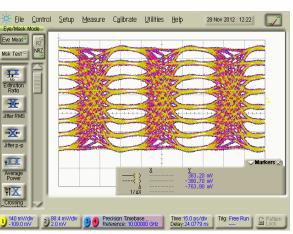
The measurements below had been performed using a SHF 12103 A Bit Pattern Generator (PRBS 2³¹-1) and an Agilent 86100D Digital Communication Analyzer (DCA) with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The outputs of the DAC module had been connected directly to the DCA input.

8-Level Output Signal Measurement

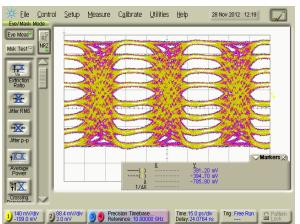
Eye Masch Mode

Eye Masch Node

Eye Masch Node

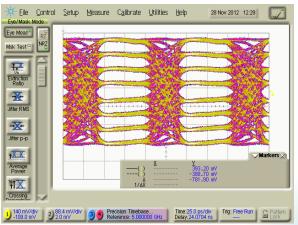

Eye Masch Power

Mitter RNIS


Jitter RNIS

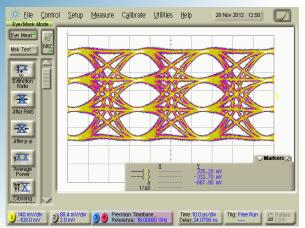
Jitte

Out @ 32 GBaud

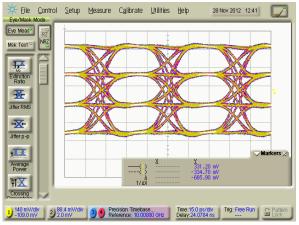

Out! @ 32 GBaud

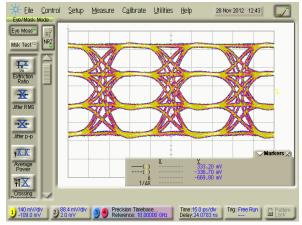
Out @ 20 GBaud

Out! @ 20 GBaud

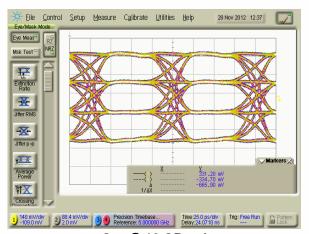

Out @ 10 GBaud

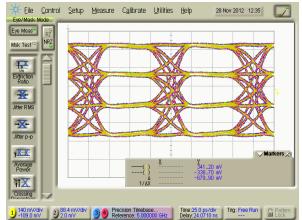
Out! @ 10 GBaud




4-Level Output Signal Measurement

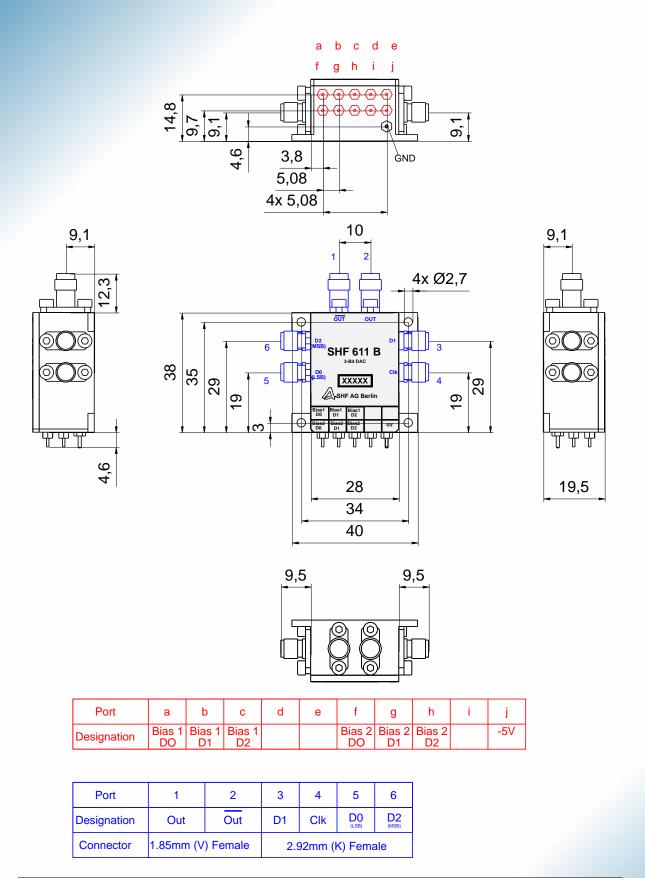
Out @ 32 GBaud


Out! @ 32 GBaud



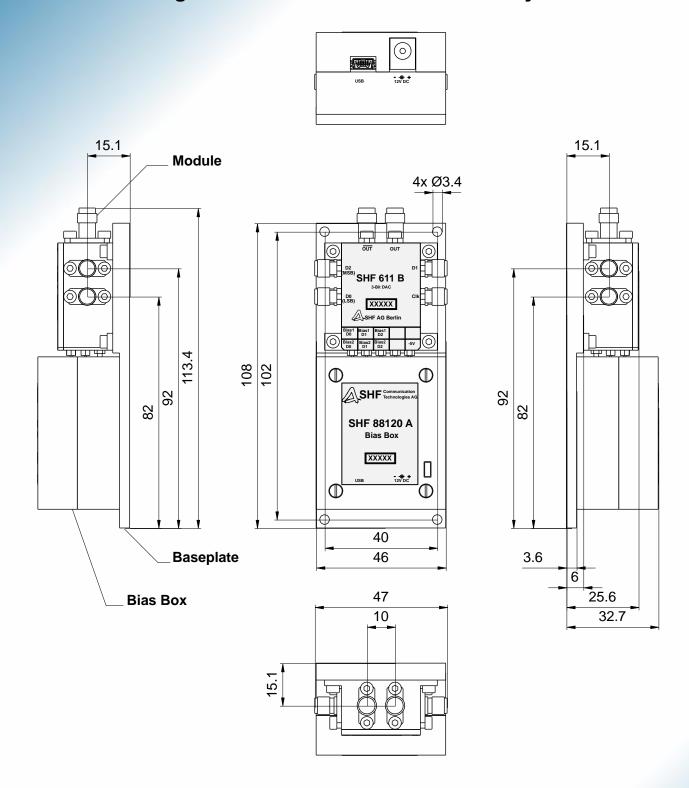
Out @ 20 GBaud

Out! @ 20 GBaud



Out @ 10 GBaud

Out! @ 10 GBaud


Outline Drawing - Module

Outline Drawing - "Module + Bias Box"- Assembly

