

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone +49 30 772051-0 • Fax +49 30 7531078 E-Mail: sales@shf.de • Web: http://www.shf.de

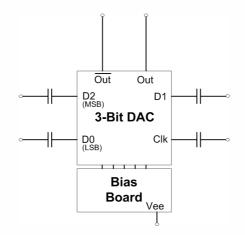
Datasheet SHF 611 A 32 GBaud 3-Bit DAC

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 1/9

Description

The SHF 611 A is a 3-Bit Digital-to-Analog Converter (DAC) operating at data rates up to 32 GBaud for use in broadband test setups and telecom transmission systems. Three 32 Gbps single ended serial data streams are accepted by the DAC and converted into one differential 8-Level data signal at a nominal output data rate of 32 GBaud. By using only two input ports it is possible to convert two single ended input data serial data streams into a 4-Level output signal. A single ended clock signal (nominally 32 GHz) with the same frequency as the output data rate drives the SHF 611 A.

All data input ports are re-timed by the clock input signal. The RF input ports are AC-coupled. The RF output ports are DC-coupled. Unused in- and output ports should be terminated.


Features

- Broadband operation up to 32 GBaud
- Differential data output, 900 mV single ended output swing
- Single ended clock and data inputs
- Latched input ports
- Output level control
- Bias board

Applications

- 100G Ethernet development and prototyping
- 200G and 400G systems
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel[®]
- Broadband test and measurement equipment

Block Diagram

R Fibre Channel is a registered trademark of the Fibre Channel Industry Association

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 2/9

Bias Board

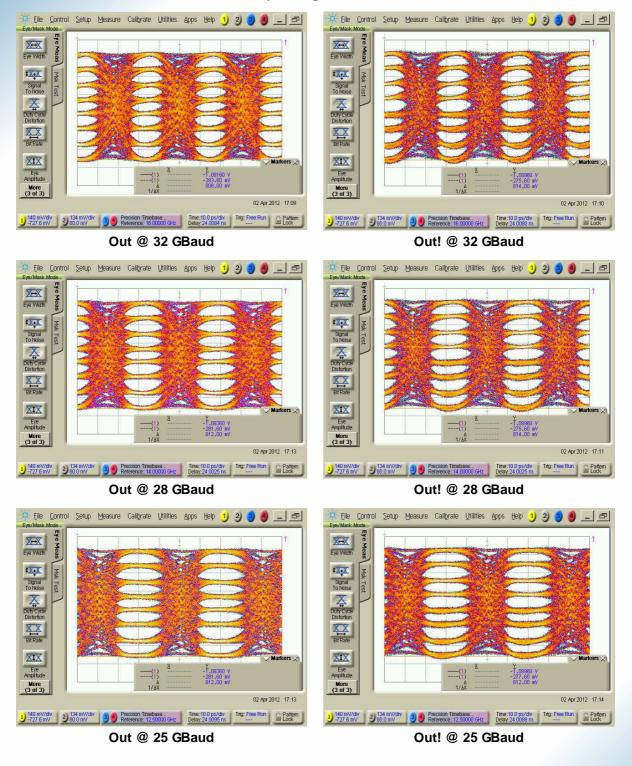
At delivery, the bias board is mounted on a common base plate, together with the SHF 611 A 3-Bit DAC. All bias voltages are provided by this bias board which is controlled by a PC via a USB interface. The easy to use software package is a complementary part of each delivery.

For system applications it is possible to remove the bias board. In that case the operating voltages have to be supplied by the customer's circuitry.

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 3/9

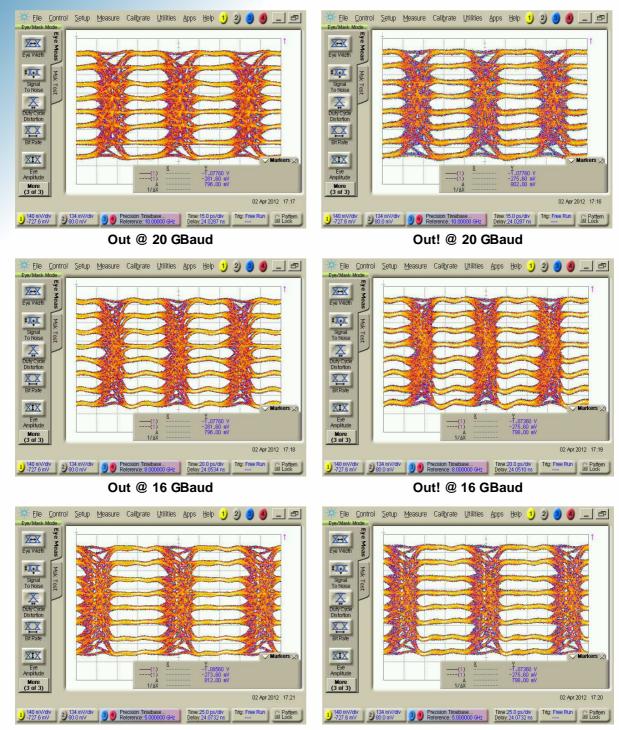
Specifications

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment	
Input Parameters							
Data Input Voltage	mV	V _{data} in	100	200	300	Clock input amplitude = 150mV	
Clock Input Frequency	GHz	f _{in}	1		32		
Clock Input Voltage	${\sf mV}_{\sf pp}$	$V_{\text{clk in}}$	100	150	250	Data input amplitude = 200mV	
Output Parameters							
Minimum Output Data Rate	GBaud	R _{in,min}			1		
Maximum Output Data Rate	GBaud	R _{in,max}	32				
Output Amplitude	mV	V _{out}		930		Single ended, full scale, adjustable up to -3dB, see table below	
Power Requirements							
Supply Voltage	V	V _{ee}	-5.2	-5	-4.8		
Supply Current	mA	lee		350	380		
Power Dissipation	mW	Pd		1750		@ V _{EE} = -5V	
Bias Voltages							
Bias Adjust 1 for D0, D1 & D2	V	V _{Bias1}	-3.3		0		
Bias Adjust 2 for D0, D1 & D2	V	V _{Bias2}	-3.3		0		
Conditions							
Operating Temperature	°C	Tambient	15		35		


Maximum Output Amplitude						
Input D2	Input D1	Input D0	Output Amplitude (typ. ±10%) [mV]			
-	-	On	150			
-	On	-	270			
-	On	On	390			
On	-	-	540			
On	-	On	680			
On	On	-	800			
On	On	On	930			

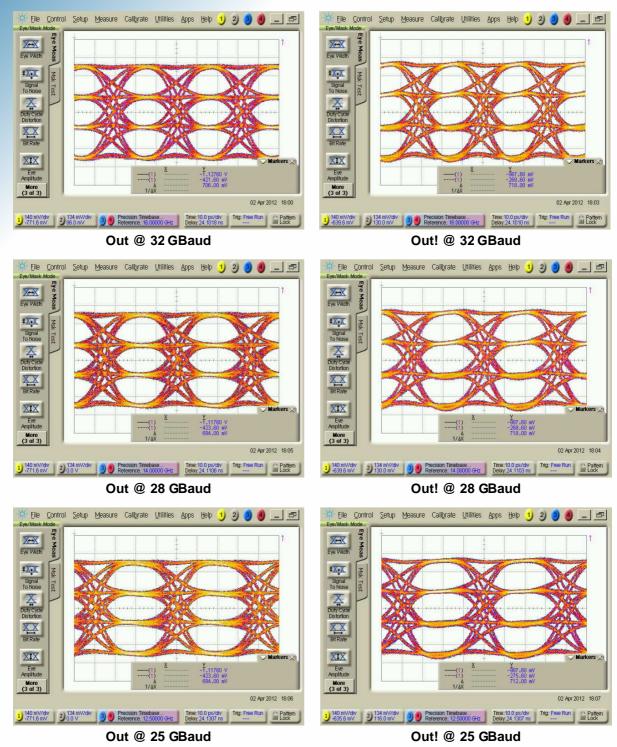
SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 4/9

The measurements below had been performed using a SHF 12103 A Bit Pattern Generator (PRBS 2³¹-1) and an Agilent 86100D Digital Communication Analyzer (DCA) with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The outputs of the DAC module had been connected directly to the DCA input.

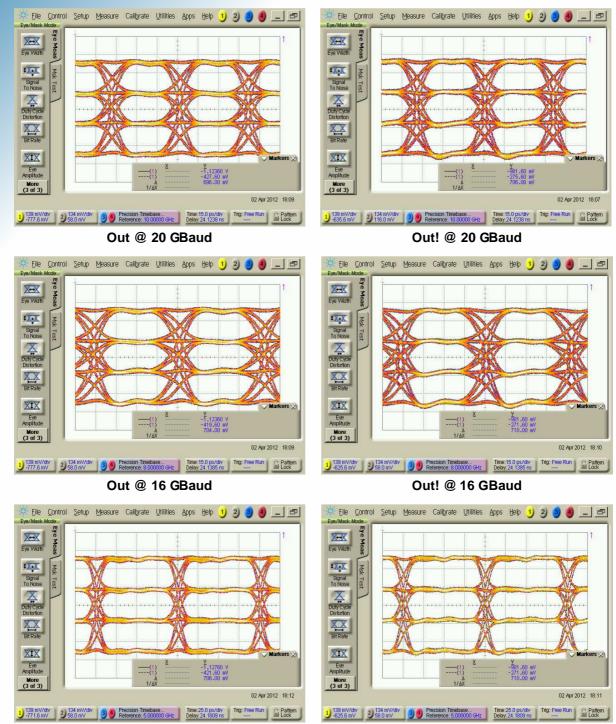


8-Level Output Signal Measurement

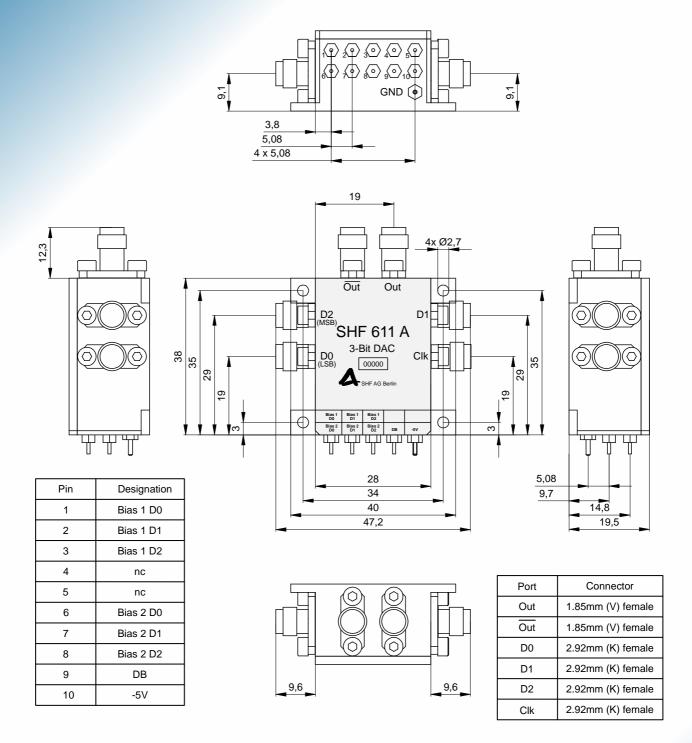
SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 5/9


Out @ 10 GBaud

Out! @ 10 GBaud


4-Level Output Signal Measurement

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 7/9


Out @ 10 GBaud

Out! @ 10 GBaud

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 8/9

SHF reserves the right to change specifications and design without notice – SHF 611 A - V002 – June 29, 2012 Page 9/9

