

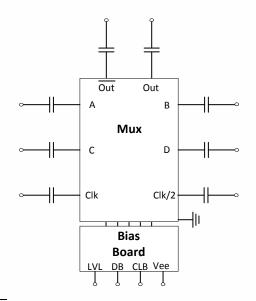
SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone +49 30 772051-0 • Fax +49 30 7531078 E-Mail: sales@shf.de • Web: http://www.shf.de

Datasheet SHF 602 A 60 Gbps 4:1 Multiplexer

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 1/10

The SHF 602 A is a 4:1 Multiplexer operating at data rates up to 60 Gbps for use in broadband test setups and telecom transmission systems. Four \leq 15 Gbps single ended serial data streams are accepted by the multiplexer and converted into one differential data signal at a nominal output data rate up to 60 Gbps. A single ended clock signal with a frequency half of the output data rate drives the SHF 602 A. All RF in- and output ports are AC-coupled. Unused in- or output ports should be terminated.


Features

- Broadband operation up to 60 Gbps
- Differential data output, 600mV single ended output swing
- Single ended clock and data inputs
- Divide-by-2 clock output
- Output Level Control
- Bias Board

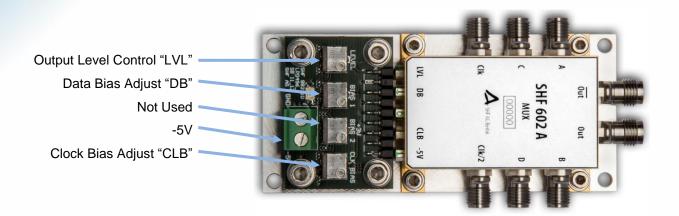
Applications

- 100G Ethernet development and prototyping
- 25G/28G CEI applications
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel[®]
- Broadband test and measurement equipment

Block Diagram

R Fibre Channel is a registered trademark of the Fibre Channel Industry Association

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 2/10



At delivery, the bias board is mounted on a common base plate, together with the SHF 602 A MUX. When using the bias board only one supply voltage of -5V needs to be applied; all operating voltages will be provided by the bias board.

With the factory settings all bias voltages are set to optimum / maximum output voltage. However, if required the customer can adjust the output level "LVL", the input data bias voltage "DB" and the clock bias voltage "CLB" with the appropriate trim potentiometers on the bias board.

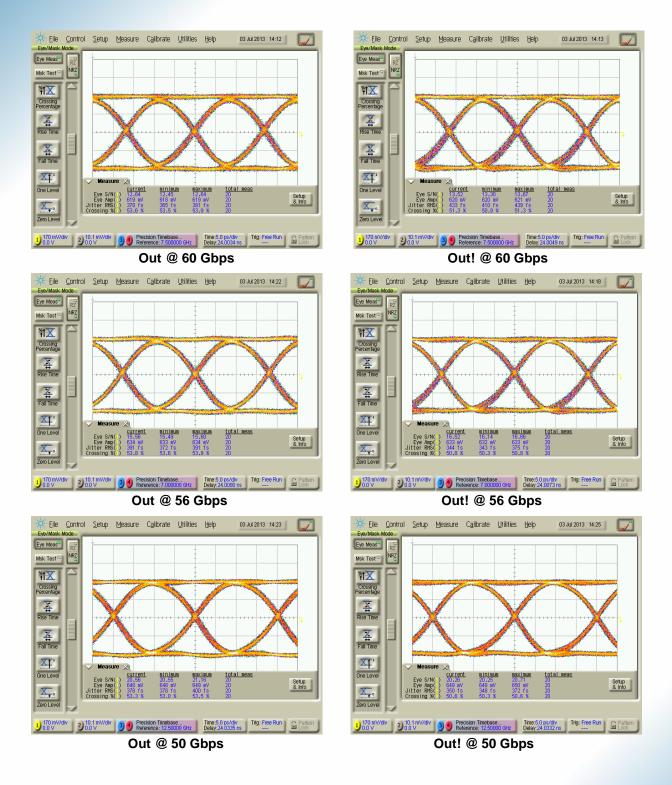
For system applications it is possible to remove the bias board. In that case the operating voltages have to be supplied by the customer's circuitry.

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 3/10

Specifications

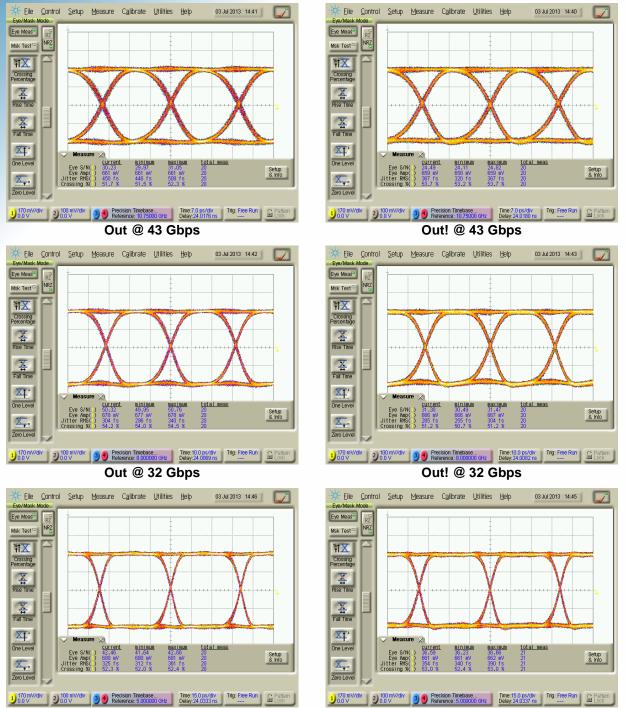
Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment			
Input Parameters									
Data Input Voltage	mV	V _{data in}	200		1000				
Clock Input Frequency	GHz	f _{in}	3		30				
Clock Input Voltage	$\mathrm{mV}_{\mathrm{pp}}$	V _{clk in}	300		1000				
Minimum Input Data Rate	Gbps	R _{in,min}		0.25 ¹	1.5				
Maximum Input Data Rate	Gbps	R _{in,max}	15						
Output Parameters									
Minimum Output Data Rate	Gbps	R _{out,min}		1 ¹	6	@ 500mV _{pp} clock input			
Maximum Output Data Rate	Gbps	R _{out,max}	60			@ 500mV _{pp} clock input			
Data Output Amplitude	mV	V _{out}	500	600	750	Single ended, adjustable up to -6dB			
Rise / Fall time	ps	t _r /t _f		8	10	20% / 80%			
Output Jitter, RMS value ²	fs	J _{rms}		350	500				
Clock Output Frequency	GHz	f _{out}	1.5		15				
Clock Output Amplitude	mV	V _{clk out}	200	250	300	@ 500mV _{pp} clock input			
Power Requirements									
Supply Voltage	V	V _{ee}	-5.2	-5	-4.8				
Supply Current	mA	l _{ee}		710	740				
Power Dissipation	mW	P _d		3550		@ V _{EE} = -5V; incl. Bias Board			
Bias Voltages									
Output Level Adjust	V	V_{LVL}	-3.3		0	if not used, connect to gnd			
Input Data Bias	V	V _{DB}	-3.3	-1,65	0	common voltage for data inputs A,B,C and D			
Clock Bias	V	V _{CLB}	-3.3	-1,65	0				
Conditions									
Case Temperature	°C	T _{case}		40	45				

SHF reserves the right to change specifications and design without notice - SHF 602 A - V002 - July 04, 2013

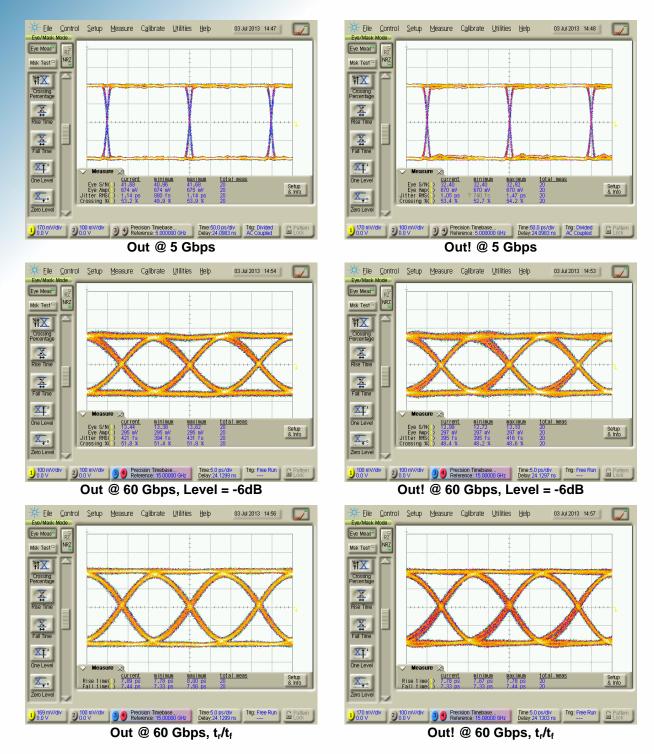


¹ For operation below 6Gbps it is necessary to apply a clock input signal with a slew rate ≥3V/ns

² Test condition: Clock Input Signal Jitter_{RMS} = 230 fs

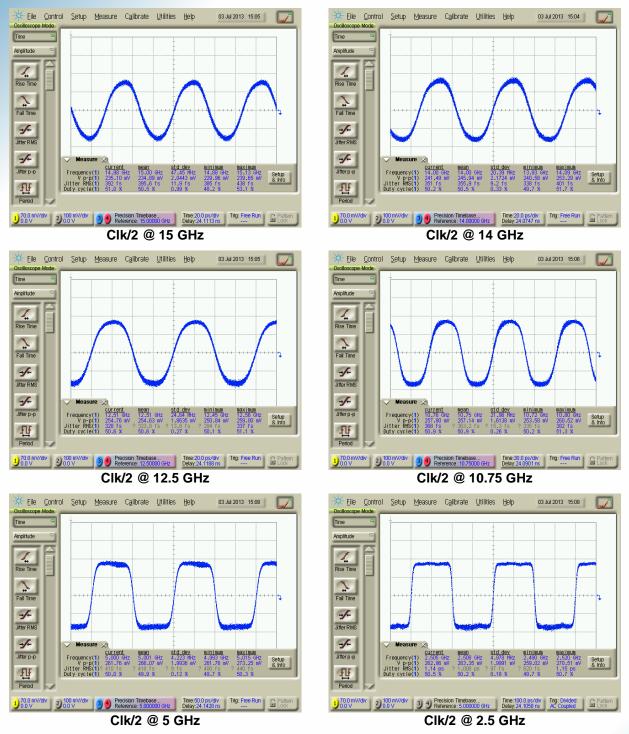

The measurements below had been performed using a SHF 12104 A BPG (PRBS 2³¹-1) and an Agilent 86100A DCA with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The outputs of the multiplexer module had been connected to the DCA inputs with a 6 dB Anritsu V-Attenuator.

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 5/10

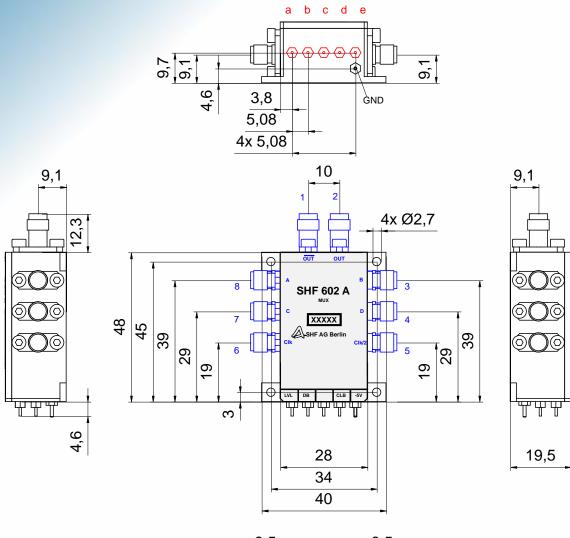

Out @ 20 Gbps

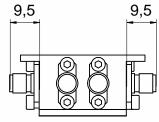
Out! @ 20 Gbps

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 6/10

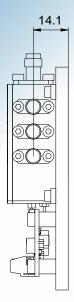


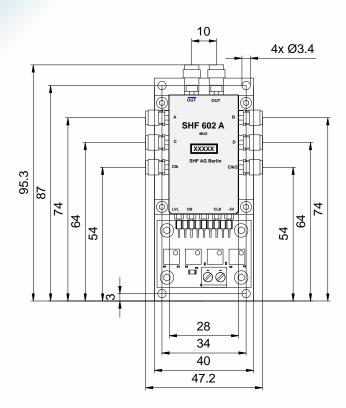
SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 7/10

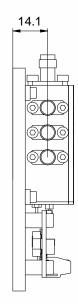

The measurements below had been performed using an Agilent 86100A DCA with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The clock/2 outputs of the SHF 602 A MUX had been connected to the DCA inputs with a 6 dB Anritsu V-Attenuator.



SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 8/10


Port	а	b	с	d	е
Designation	LVL	DB		CLB	-5V


Port	1	2	3	4	5	6	7	8	
Designation	Out	Out	В	D	Clk/2	Clk	С	А	
Connector	1.85mm ([\]	2.92mm (K) Female							


SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 9/10

SHF reserves the right to change specifications and design without notice – SHF 602 A - V002 – July 04, 2013 Page 10/10

