


#### **SHF Communication Technologies AG**

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf.de • Web: http://www.shf.de



# Datasheet SHF 601 A

60 Gbps

2:1 Multiplexer

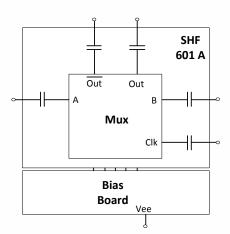






## **Description**

The SHF 601 A is a 2:1 Multiplexer operating at data rates up to 60 Gbps for use in broadband test setups and telecom transmission systems. Two 30 Gbps single ended serial data streams are accepted by the multiplexer and converted into one differential data signal at a nominal output data rate of 60 Gbps. A single ended clock signal (nominally 30 GHz) with a frequency half of the output data rate drives the SHF 601 A. All RF in- and output ports are AC-coupled. Unused in- or output ports should be terminated.


#### **Features**

- Broadband operation up to 60 Gbps
- Differential data output, 650mV single ended output swing
- Single ended clock and data inputs
- **Output Level Control**
- Bias Board

#### **Applications**

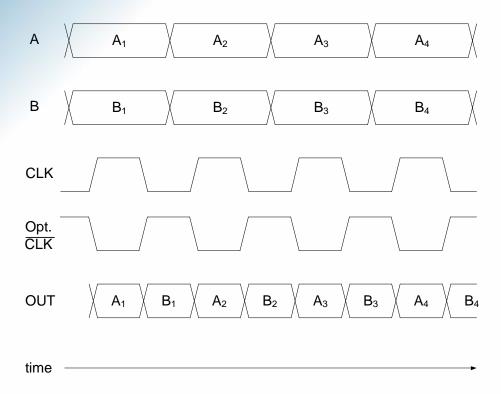
- 100G Ethernet development and prototyping
- OC-768 / STM-256 applications
- Telecom transmission
- Fibre Channel®
- Broadband test and measurement equipment

### **Block Diagram**



### **Options**

Option Inverted Clock - Phase of the clock input port is shifted by 180°

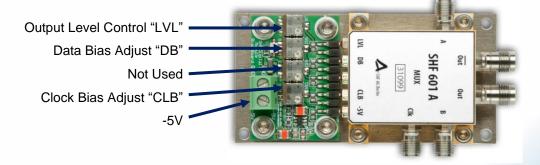

SHF reserves the right to change specifications and design without notice - SHF 601 A - V005 - May 20, 2016

Fibre Channel is a registered trademark of the Fibre Channel Industry Association





### **Timing Diagram**




#### **Bias Board**

At delivery, the bias board is mounted on a common base plate, together with the SHF 601 A MUX. When using the bias board only one supply voltage of -5V needs to be applied; all operating voltages will be provided by the bias board.

With the factory settings all bias voltages are set to optimum / maximum output voltage. However, if required the customer can adjust the output level "LVL", the input data bias voltage "DB" and the clock bias voltage "CLB" with the appropriate trim potentiometers on the bias board.

For system applications it is possible to remove the bias board. In that case the operating voltages have to be supplied by the customer's circuitry.







# **Absolute Maximum Ratings**

| Parameter                              | Unit | Symbol               | Min. | Тур. | Max. | Comment            |
|----------------------------------------|------|----------------------|------|------|------|--------------------|
| Input Parameters                       |      |                      |      |      |      |                    |
| Data Input Voltage                     | mV   | V <sub>data in</sub> |      |      | 900  | Peak-to-Peak       |
| Clock Input Voltage                    | mV   | $V_{\text{clk in}}$  |      |      | 900  | Peak-to-Peak       |
| External DC Voltage on RF Input Ports  | V    | $V_{DCin}$           | -10  |      | +10  | AC coupled inputs  |
| External DC Voltage on RF Output Ports | V    | $V_{DCout}$          | -10  |      | +10  | AC coupled outputs |
| DC Supply Voltage                      | V    | V <sub>ee</sub>      | -5.5 |      | 0    |                    |

# **Specifications**

| Parameter                                  | Unit      | Symbol               | Min. | Тур. | Max.           | Comment                               |  |
|--------------------------------------------|-----------|----------------------|------|------|----------------|---------------------------------------|--|
| Input Parameters                           |           |                      |      |      |                |                                       |  |
| Minimum Input Data Rate                    | Gbps      | R <sub>in,min</sub>  |      |      | 1              |                                       |  |
| Maximum Input Data Rate                    | Gbps      | R <sub>in,max</sub>  | 30   |      |                |                                       |  |
| Data Input Voltage                         | mV        | V <sub>data in</sub> | 200  |      | 800            | Eye Amplitude;<br>500 mV recommended; |  |
| External DC Voltage on RF Data Input Ports | V         | $V_{DCin}$           | -9   |      | +9             | AC coupled inputs                     |  |
| Min. Clock Input Frequency                 | GHz       | f <sub>in,min</sub>  |      |      | 1 <sup>1</sup> |                                       |  |
| Max. Clock Input Frequency                 | GHz       | f <sub>in,max</sub>  | 30   |      |                |                                       |  |
| Clock Input Voltage                        | $mV_{pp}$ | V <sub>clk in</sub>  | 300  |      | 800            | Peak-to-Peak;<br>500 mV recommended   |  |
| External DC Voltage on RF Clock Input Port | V         | $V_{DCin}$           | -9   |      | +9             | AC coupled input                      |  |

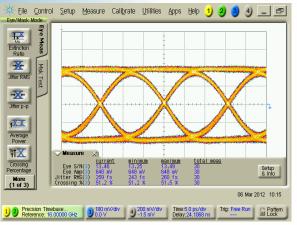


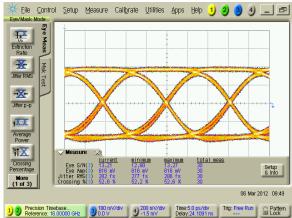
 $<sup>^{1}</sup>$  For clock input frequencies between 1...3 GHz a clock input signal slew rate of ~10 V/ns is required



| Parameter                             | Unit | Symbol                         | Min. | Тур.  | Max.           | Comment                                                  |  |
|---------------------------------------|------|--------------------------------|------|-------|----------------|----------------------------------------------------------|--|
| Output Parameters                     |      |                                |      |       |                |                                                          |  |
| Minimum Output Data Rate              | Gbps | $R_{\text{in,min}}$            |      | 1     | 2 <sup>2</sup> | @ 500mV <sub>pp</sub> clock input                        |  |
| Maximum Output Data Rate              | Gbps | R <sub>in,max</sub>            | 60   | 64    |                | @ 500mV <sub>pp</sub> clock input                        |  |
| Output Voltage                        | mV   | V <sub>out</sub>               | 550  | 630   | 800            | Eye Amplitude;<br>Single ended;<br>Adjustable up to -3dB |  |
| Rise / Fall time                      | ps   | t <sub>r</sub> /t <sub>f</sub> |      | 8     | 10             | 20%80%                                                   |  |
| Output Jitter, RMS value <sup>3</sup> | fs   | $J_{rms}$                      |      | 350   | 500            |                                                          |  |
| Power Requirements                    |      |                                |      |       |                |                                                          |  |
| Supply Voltage                        | V    | V <sub>ee</sub>                | -5.2 | -5    | -4.8           |                                                          |  |
| Supply Current                        | mA   | l <sub>ee</sub>                |      | 430   | 460            |                                                          |  |
| Power Dissipation                     | mW   | P <sub>d</sub>                 |      | 2150  |                | @ V <sub>EE</sub> = -5V;<br>incl. Bias Board             |  |
| Bias Voltages                         |      |                                |      |       |                |                                                          |  |
| Output Level Adjust                   | V    | LVL                            | -3.3 |       | 0              | if not used, connect to gnd                              |  |
| Input Data Bias                       | V    | DB                             | -3.3 | -1,65 | 0              |                                                          |  |
| Clock Bias                            | V    | CLB                            | -3.3 | -1,65 | 0              |                                                          |  |
| Conditions                            |      |                                |      |       |                |                                                          |  |
| Operating Temperature                 | °C   | T <sub>ambient</sub>           | 15   |       | 35             |                                                          |  |

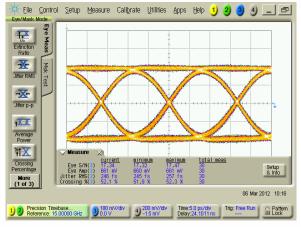
 $^2$  For output data rates between 2...6 Gbps a clock input signal slew rate of ~10 V/ns is required

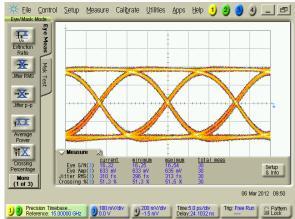

SHF reserves the right to change specifications and design without notice – SHF 601 A - V005 – May 20, 2016





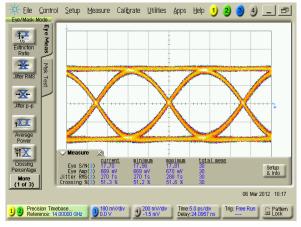

## **Typical Output Eye Diagrams**


The measurements below had been performed using a SHF 12103 A BPG (PRBS 231-1) and an Agilent 86100D DCA with Precision Time Base Module (86107A) and 70 GHz Sampling Head (86118A). The outputs of the multiplexer module had been connected directly to the DCA input.






Out @ 64 Gbps


Out inv. @ 64 Gbps

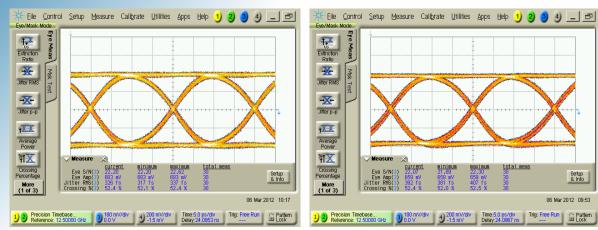




Out @ 60 Gbps

Out inv. @ 60 Gbps



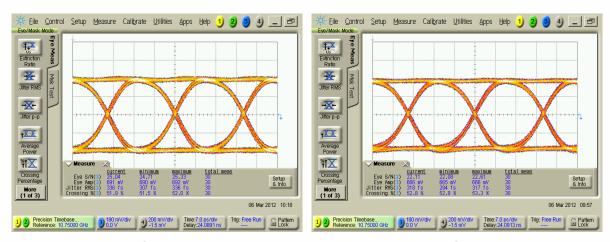

🌣 Eile Control Setup Measure Calibrate Utilities Apps Help 🜖 2) 🧿 4) 🔔 🗗 120 X Jitter RMS -X-Jitter p-p +XX Average Power **\*1X** Setup & Info More (1 of 3) 06 Mar 2012 09:53 Precision Timebase...
3 180 mV/div 4 200 mV/div Time 5.0 ps/div Delay:24.0970 ns Trig: Free Run C Pattern C Lock

Out @ 56 Gbps

Out inv. @ 56 Gbps

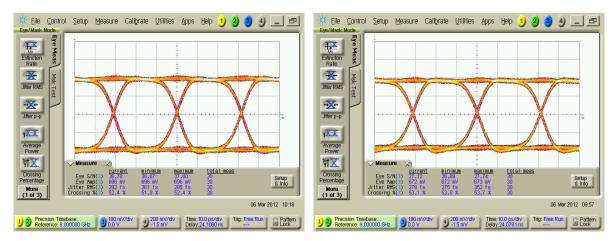







Out @ 50 Gbps

Out inv. @ 50 Gbps

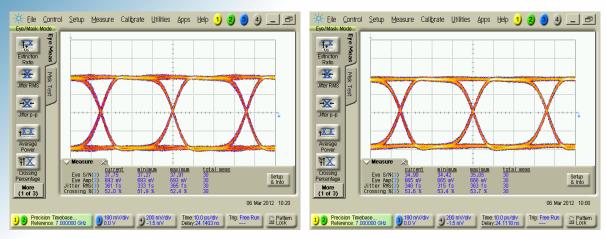

Setup & Info

06 Mar 2012 09:53



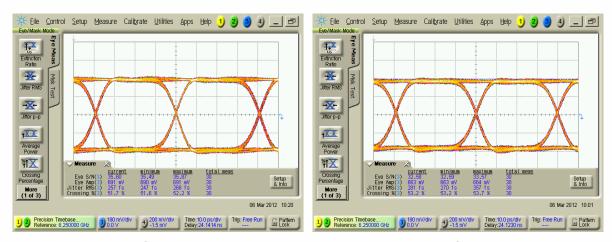
Out @ 43 Gbps

Out inv. @ 43 Gbps



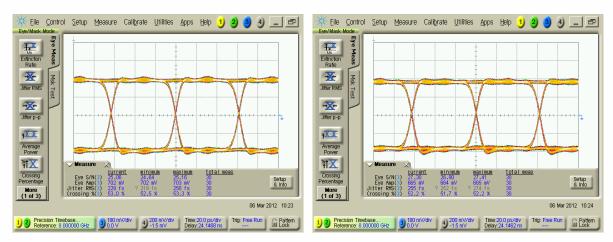

Out @ 32 Gbps

Out inv. @ 32 Gbps







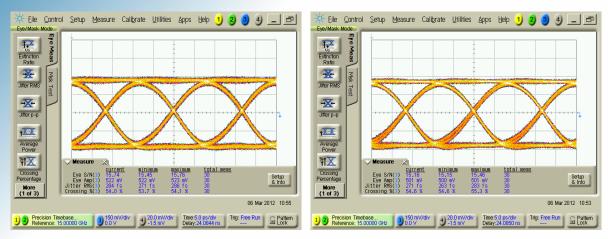


Out @ 28 Gbps

Out inv. @ 28 Gbps



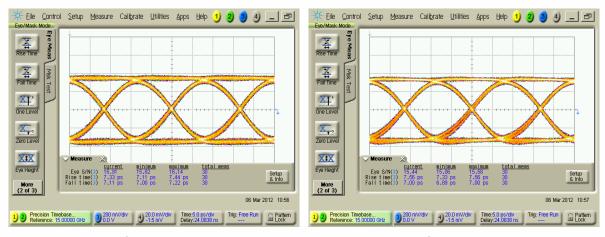
Out @ 25 Gbps

Out inv. @ 25 Gbps




Out @ 16 Gbps

Out inv. @ 16 Gbps



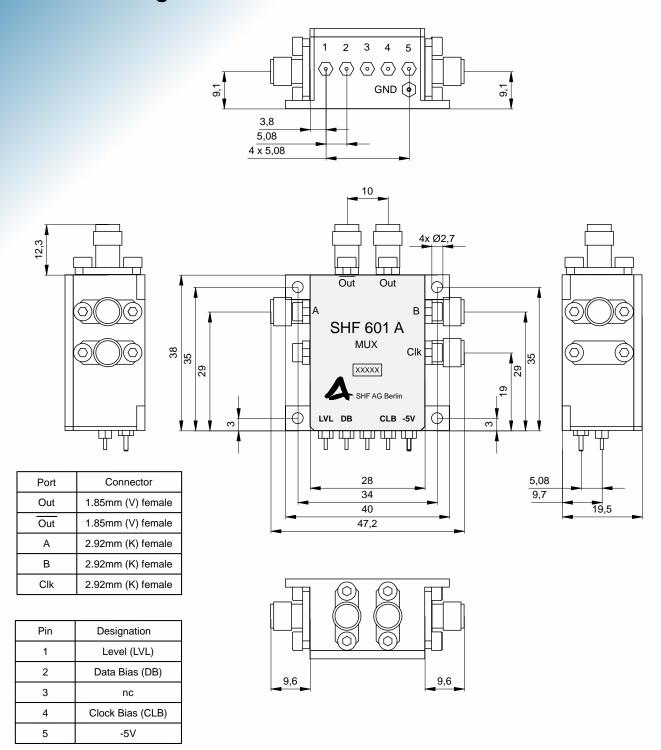





Out @ 60 Gbps, Level = -3dB

Out! @ 60 Gbps, Level = -3dB




Out @ 60 Gbps, t<sub>r</sub>/t<sub>f</sub>

Out! @ 60 Gbps, t<sub>r</sub>/t<sub>f</sub>





# **Outline Drawing**



All dimensions in mm.

