SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone ++49 30 / 772 05 10 • Fax ++49 30 / 753 10 78 E-Mail: sales@shf.de • Web: http://www.shf.de # Datasheet SHF 58215 A # Multi-Channel Amplifier The SHF 58215 A is a plug-in intended to amplify the output signals from the 33G output channels of a SHF 12103/4 A Bit Pattern Generator. This plug-in module is part of the SHF modular measurement series and needs to be installed in a mainframe. In case the plug-in is fitted into a right hand side mainframe slot on top of the BPG it can be connected by short jumper cables from the BPGs data ports to the input ports of the amplifier. #### **Features** - All settings are computer controlled and adjustable via the BCC (BERT Control Center) software package - Adjustable output voltage - Adjustable crossing # **Configurations** • Option DC Adjust: Output offset voltage can be varied by software # **Specifications** #### **Data Output Specification** All specifications below are only applicable if the SHF 58215 A is driven by and delivered together with a SHF 12103/4 A in configuration Dual 33, Quad 33 or Oct 33. For existing SHF 12103/4 A Bit Pattern Generators the Amplifier Plug-In needs to be calibrated together with the BPG. | Parameter | Symbol | Unit | Min. | Тур. | Max. | Comment | |----------------------------------|--------------------------------|------|------|------|------|---| | Maximum Bit Rate | | Gbps | 33 | | | | | Minimum Bit Rate | | Gbps | | | 3 | | | Input Level | V_{in} | V | 0.48 | 0.5 | 0.52 | Out of SHF 12103/4 A
33 Gbps Data Output;
Calibrated output amplitude and
crossing adjustment only valid
with input level = 0.5 V | | Maximum Output Level | V _{out max} | V | 2.5 | | | Adjustable via BCC ¹ ;
Eye Amplitude | | Minimum Output Level | V _{out min} | V | | | 1.0 | Adjustable via BCC ¹ ;
Eye Amplitude | | Jitter (RMS) | J_RMS | fs | | 600 | 800 | on scope display ² @ 50 % Crossing; @ Full output amplitude | | Rise/Fall Time | t _r /t _f | ps | | 12 | 14 | 20 % 80 % on scope display ² | | Maximum Output
Offset Voltage | $V_{\text{off max}}$ | V | +2 | | | Adjustable via BCC;
Calibrated output offset voltage
only valid with 50 Ohm load at
the RF output port | | Minimum Output
Offset Voltage | $V_{\text{off min}}$ | V | | | -2 | Adjustable via BCC;
Calibrated output offset voltage
only valid with 50 Ohm load at
the RF output port | | Maximum Crossing | | % | 60 | | | Adjustable via BCC ³ | | Minimum Crossing | | % | | | 40 | Adjustable via BCC ³ | | Connector Type | | Ω | | 50 | | 2.92 mm (K) female | ³ Crossing value may deviate up to ±5% from the BCC-setting ¹ Output Amplitude value may deviate up to ±150 mV from the BCC-setting ² Measured with Agilent 86100C with 70 GHz sampling head and precision time base triggered by Clk or Clk/2 output, using PRBS 2³¹-1 ## **General Plug-In Specifications** | Parameter | Symbol | Unit | Min. | Тур. | Max. | Conditions | |---------------------------|---------------------|----------|------|------|--------|--| | Max. RF Input Power | P _{in max} | dBm
V | | | 4
1 | Peak to peak voltage | | High Frequency 3 dB Point | f _{HIGH} | GHz | 33 | 38 | | | | Low Frequency 3 dB Point | f_{LOW} | kHz | | 70 | 80 | | | Gain | S ₂₁ | dB | 16 | 17 | 18 | Non-inverting;
Measured at P _{in} =-27 dBm | | Input Return Loss | S ₁₁ | dB | | -10 | - 9 | < 25 GHz | | Output Return Loss | S ₂₂ | dB | | -10 | - 9 | < 25 GHz | ## **Absolute Maximum Ratings** | Parameter | Symbol | Unit | Min. | Тур. | Max. | Comment | |--|----------------------|------|------|------|------|--| | Input Parameters | | | | | | | | Data Input Voltage | V _{data in} | mV | | | 1000 | Peak to peak voltage | | External DC Voltage on RF Input Ports | V_{DCin} | V | -9 | | +9 | AC coupled input | | Output Parameters | | | | | | | | External DC Voltage on RF Output Ports | V_{DCout} | V | -6 | | +6 | AC coupled output;
W/o 'Option DC Adjust' | | Sink or Source Current by external voltage source on RF Output Ports | | mA | -30 | | +30 | Applies to 'Option DC Adjust' | | Max allowable sink or source current during hot swap of DC loads | | Α | -40 | | +40 | Applies to 'Option DC Adjust' | # **Typical Output Waveforms** #### **Data Output Signals @ 33 Gbps** All measurements had been performed by using a SHF 12104 A Bit Pattern Generator in Config Quad 33, an Agilent 86100C DCA with Precision Time Base Module (86107A) and a 70 GHz Sampling Head (86118A) directly connected to the output of the SHF 58215 A. ### Data Output Signals @ 28 Gbps Crossing: 40 % Crossing: 60 % Eye Amplitude: 2.5 V #### Data Output Signals @ 20 Gbps Crossing: 40 % Crossing: 50 % Crossing: 60 % Eye Amplitude: 2.5 V ### **Data Output Signals @ 10 Gbps** Crossing: 40 % Crossing: 50 % Crossing: 60 % Eye Amplitude: 2.5 V SHF reserves the right to change specifications and design without notice – SHF 58215 A - V001 – Sep. 04, 2015 # 4 # **Output Offset Voltage** The output offset voltage is calibrated from into a 50 Ohm load. If the output load resistance varies, the offset voltage of the output port varies with the internal DC-resistance of ~4 Ohm.