

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone ++49 30 / 772 05 10 • Fax ++49 30 / 753 10 78

E-Mail: sales@shf.de • Web: http://www.shf.de

Datasheet SHF 46213C Optical DQPSK Transmitter

Description

The SHF 46213C is an optical DQPSK transmitter unit. It is a field replaceable plug-in module which needs to be installed in a mainframe type SHF 10001B or SHF 10000A. Together with other plug-in modules from this instruments series, a modular and scalable measurement system can be put together.

In a DQPSK (Differential Quadrature Phase Shift Keying) transmission system, the data is transmitted in the differential optical phase change between the symbols. The data is encoded in four different phase states. Since one transmitted symbol includes the information of two bits the symbol rate is reduced by the factor ½. Therefore one advantage of a DQPSK transmission system is a high spectral efficiency.

The SHF 46213C uses a parallel modulator which converts 2 electrical data streams (I and Q) of up to 32 Gbps into 1 optical data stream of up to 32 GSymbols/s. Both electrical data streams modulate the light by a thermally stable Chirp-free Lithium Niobate Mach-Zehnder modulator with a phase difference of $\pi/2$. Before superposition of the two light streams the Q part gets $\pi/2$ shifted in order to have four different phase states in the transmitted signal.

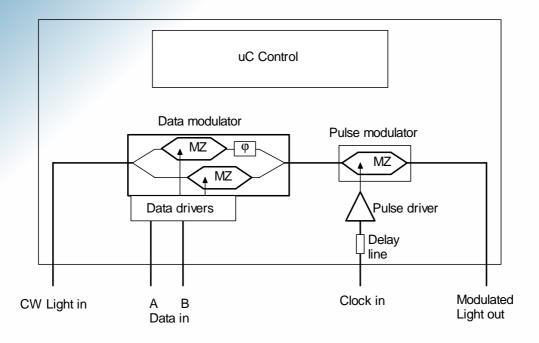
The 2 data channels can be switched On and Off independently, thus permitting to generate either DPSK or DQPSK signals.

To detect and to demodulate either the I or the Q channel, the 28 Gbps DPSK optical receiver SHF 47215 is the ideal instrument. It is possible to switch between the I and the Q channel for eye analysis or BER measurement of both channels separately.

For a 32 Gbps BER measurement the SHF Bit Pattern Generators (SHF 12103) can provide the precoded I and Q data streams.

For the RZ modes, an amplified clock signal drives a third modulator. The output from this modulator is a train of pulses of constant width. For the NRZ-D(Q)PSK modes, the third modulator is biased to allow light through continuously.

The temperature stable modulators and an automatic bias circuit for both the DQPSK and pulse carver modulators ensure high stability of the output signal.


Features

- 32 GSymbol/s optical data streams
- Separate analysis of I and Q channel possible
- Quick optimization of optical eye diagram performance by user adjustable modulator bias control
- All features computer controlled
- All modulators' bias conditions controlled automatically
- Selectable automatic and manual bias control (ABC circuit)

Functional block diagram

Specifications - SHF 46213C

Parameter	Unit	Min.	Тур.	Max.	Comment				
Optical parameters									
Wavelength range		C- and L-band							
Insertion loss	dB		12	17	connector to connector, maximum transmission without modulation				
DC Extinction ratio	dB		20						
Return loss	dB		30		without optical connector				
Electrical and electro-optical parameters									
Electro-optical bandwidth of Data modulator	GHz	25			-3dB electrical				
Symbol rate RZ-DQPSK DQPSK	Gsym/s	20 5		32 32					
Drive amplifier electrical return loss Data Clock pulse RZ	dB			-10 -10					
Drive amplifier input level Data input RZ clock input	Vpp	0.5 0.5		0.9 1.2					
Dynamic signal to noise ratio DPSK-mode, either Data A or B		12	15		measured with SHF 47211 DPSK-receiver. @ 20Gbps				

Absolute maximum ratings

Parameter	Unit	Min.	Тур.	Max.	Conditions
Optical input power	dBm			16	
NRZ data amplifier input power	dBm			4	NRZ data
RZ clock driver input power	dBm			4	CW

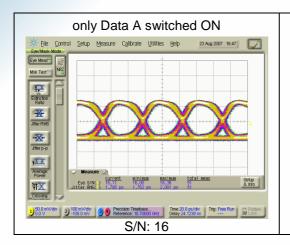
General specifications

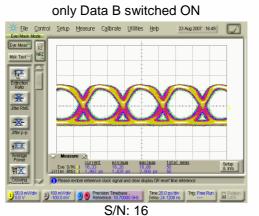
Parameter	Unit	Min.	Тур.	Max.	Conditions
Weight	kg		3.3		
Dimensions	mm		59x213x450		w/o Frontpanel - Connectors
Power consumption	W		20.5		
Operating temperature	$\mathcal C$	10		35	
Electrical data input connectors					male K (2.92mm)
Clock input connector					male K (2.92mm)
Optical connectors					FC/PC ¹

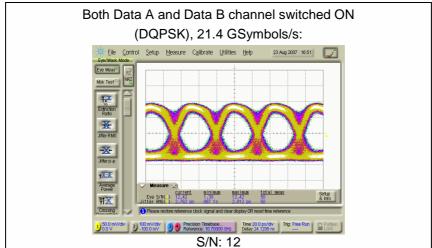
¹ Other connectors available on request.

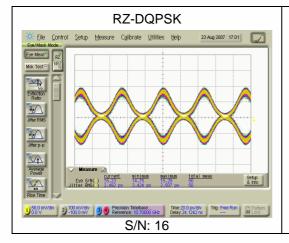
Test Measurements

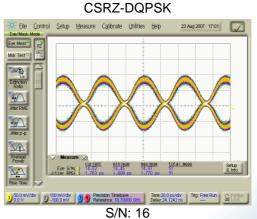
The following equipment was used in obtaining these results:


SHF12100 A Pattern Generator at 21.4 Gbps, PRBS 2³¹-1


SHF 1550DFB Laser source set to 15mW output power @ 1550 nm.


AMPAQ EDFA + bandpass filter


Agilent 86100A DCA with 70GHz plugin and precision timebase module


D(Q)PSK signals detected with SHF 47211 21.4 GBit/s DPSK receiver

