
SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone ++49 30 / 772 05 10 • Fax ++49 30 / 753 10 78

E-Mail: sales@shf.de • Web: http://www.shf.de

"Preliminary"

Datasheet SHF 46211A

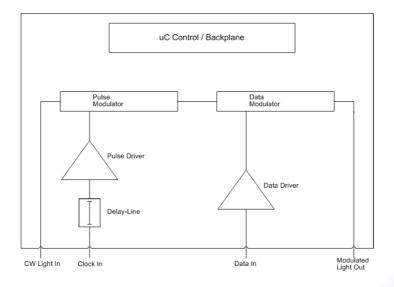
10 Gbps Multiformat Optical Transmitter

Description

The SHF 46211A is an optical transmitter unit. This is a half-width plug-in for the SHF 10000A mainframe. Field installation or upgrade by the end-user is possible for this equipment.

The SHF 46211A Optical Transmitter converts electrical signals into optical signals at a data rate of up to 12.5 Gbps. It is able to encode the data in ASK (amplitude shift keying) and DPSK (differential phase shift keying) formats. With NRZ, Conventional RZ and Carrier Suppressed RZ, a total of six formats are supported. When used in DPSK mode, the SHF 47211A DPSK Optical Receiver is an ideal instrument for decoding the signal.

ASK is the most popular method used in optical communications. The light intensity is varied so that light on corresponds to "1" and light off corresponds to "0", or vice versa. DPSK is a well known coding method which has recently received interest in the transmission of high bit rate signals through optical fibers. Data is encoded by changing the phase of the light. Compared to the more conventional ASK, DPSK offers higher sensitivity and enhanced robustness against the impact of non-linear effects in DWDM transmission.


The main elements of the SHF 46211A are two thermally stable Chirp-free Lithium Niobate Mach-Zehnder modulators which are each driven by an individually optimized amplifier. For the RZ modes, an amplifier amplifies a clock signal which is used to drive the first modulator. The output from this modulator is a train of pulses of constant width. These pulses are fed into the second modulator. The pulsed light is then modulated by the data signal. In this way, RZ signals are produced from an incoming NRZ signal. For the NRZ modes, the first modulator is biased to allow light through continuously.

The temperature stable modulators and an automatic bias circuit ensure high stability of the output signal.

Features

- Up to 12,5 Gbps optical data streams
- 9 GHz E/O conversion bandwidth (typical)
- Quick optimization of optical eye diagram performance by user adjustable gain and modulator bias control
- All features computer controlled
- Both modulators' bias conditions controlled automatically
- Selectable automatic and manual bias control (ABC circuit)
- SONET/SDH compatible

Functional block diagram

SHF 46211A - V001 - 19/Feb/07

Page 2/6

Specifications – SHF 46211 A

Parameter	Unit	Min.	Tvn	Max.	Comment		
	Onit	IVIII I.	Тур.	IVIAX.	Comment		
Optical parameters Wavelength range C- and L-band							
Insertion loss	dB		11	13	connector to connector, maximum transmission		
DC Extinction ratio	dB		22		without modulation		
Return loss	dB		35		without optical connector		
Chirp (Alpha parameter)		-0.1	0	+0.1	small signal measurement method ¹		
Electrical and electro-optical parar	neters						
Electro-optical bandwidth of Data modulator	GHz	9	11		-3dB electrical		
Bit rate NRZ RZ	Gbps	2 8		12.5 12.5			
Drive amplifier electrical return loss Data Clock pulse RZ	dB			-10 -10			
Drive amplifier input level Data input RZ clock input	Vpp (dBm)	0.22 (-9) 0.5 (-2)	0.28 (-7) 0.6 (0)	0.6 (0) 1 (4)			
Data input	Vpp	0.22 (-9)					
Dynamic extinction ratio NRZ RZ CS-RZ	dB	11 12 12	13 14 14		measured between data '1' and long sequence of '0'		
Dynamic signal to noise ratio NRZ RZ CS-RZ			15 18 16				
Output rise and fall times NRZ	ps		tbd	tbd			
Pulse width (FWHM) RZ CS-RZ	ps		33 67				
Output timing jitter <rms> NRZ RZ CS-RZ</rms>	ps		tbd	tbd			
Position of crossing point @ NRZ	%	45	50	55			
DPSK mode operation							
Drive amplifier input level Data	Vpp (dBm)	0.36 (-5)		0.8 (2)			

SHF 46211A - V001 - 19/Feb/07

Clock pulse RZ		0.5 (-2)	0.6 (0)	1.2 (6)	
Phase modulation by 2 $V\pi$ drive	Rad	0		π	
Auto-bias control (ABC)					
Dither signal frequency	kHz		10		

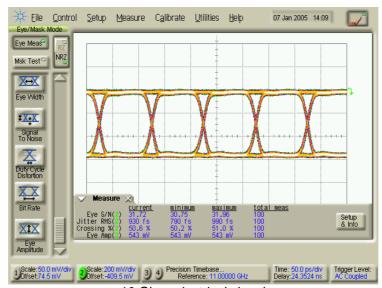
¹ (F. Devaux, Y. Sorel and J.F. Kerdiles, "Simple Measurement of Fiber Dispersion and of Chirp Parameter of Intensity Modulated Light Emitter", J. Lightwave Technol., vol. 11, no. 12, December 1993)

Absolute maximum ratings

Parameter	Unit	Min.	Тур.	Max.	Conditions
Optical input power	dBm			16	
NRZ data amplifier input power	dBm			10	NRZ data
RZ clock driver input power	dBm			10	CW

General specifications

Parameter	Unit	Min.	Тур.	Max.	Conditions
Weight	kg		3.3		
Dimensions	mm		59x213x450		w/o Frontpanel - Connectors
Power consumption	W		20.5		
Operating temperature	${\mathbb C}$	10		35	
Electrical data input connector			ruggedized 2.92mm male connector		
Clock input connector			ruggedized 2.92mm male connector		
Optical connectors			FC/PC		



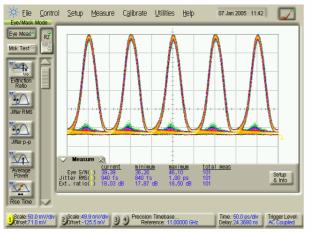
Test Measurements

The following equipment was used in obtaining these results:

- Agilent 86100A Mainframe with 86118A 70GHz plug-in
- 70 GHz Photodetector
- BPG 44E Pattern Generator
- DFB Laser source set to 15mW output power @ 1550 nm.
- AMPAQ EDFA + JDS Fitel optical bandpass
- DPSK measurements received with Mach-Zehnder Interferometer and photodetector on constructive interference arm.

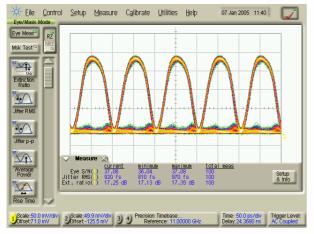
Typical transmitter data input signal

10 Gbps electrical signal

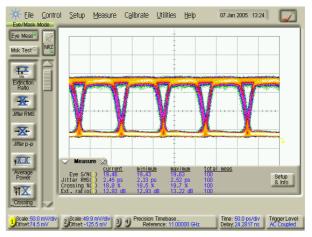

Optical output waveforms at 10Gbps

Transmitter in ASK-mode

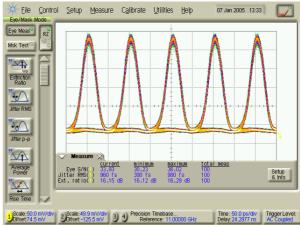
Ele Control Setup Measure Calibrate Utilities Help 07 Jan 2005 1148 Eye Meas* Misk Test | Misk Test


ASK - 10 Gbps NRZ signal

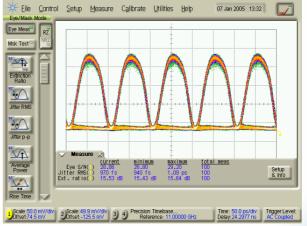
Eye S/N: 23.2; Jitter: 1.9ps; Ext. ratio: 14.9dB


ASK - 10 Gbps RZ signal

Eye S/N: 39.4; Jitter: 0.9ps; Ext. ratio: 18.0dB


ASK - 10 Gbps carrier suppressed RZ signal Eye S/N: 37.0; Jitter: 0.9ps; Ext. ratio: 17.1dB

Transmitter in DPSK-mode


DPSK - 10 Gbps NRZ signal

Eye S/N: 19.5; Ext. ratio: 12.9dB

DPSK - 10 Gbps RZ signal

Eye S/N: 33.9; Ext. ratio: 16.2dB

DPSK - 10 Gbps carrier suppressed RZ signal Eye S/N: 28.9; Ext. ratio: 15.5dB

SHF Communication Technologies AG