

Data Sheet SHF 12124 B

Compact Dual-Channel Bit Pattern Generator 32 Gbps

Description

The SHF 12124 B is a dual-channel 32 Gbps bit pattern generator. It features two differential data outputs with individual 4-Tap pre-emphasis capabilities, 2 UI skew control and duty cycle adjustment. Digital bit sequences such as standard pseudo-random bit sequences (PRBS) or short user defined bit patterns are generated by the unit at the data outputs. Many applications in research, product development as well as production tests require these data streams for testing electrical/optical components or testing signal integrity in high speed digital data communication. A wide range of operating bit rates from 7 to 32 Gbps is covered.

The operating bit rate is determined by a clock signal from an external clock source which is not part of the pattern generator. The generator operates at full clock, i.e. a 32 GHz clock signal is required for 32 Gbps operation.

For trigger and setup extension purposes three clock output signals (clock, clock/2 and clock/16) are provided on the rear panel of the instrument.

Its compact size allows placement very close to the DUT in the test setup.

Features


- Two differential output channels
- 7 to 32 Gbps operation, 'gap-free'
- Output amplitude control (maximum 400 mV single ended)
- 4-Tap-FIR pre-emphasis individually adjustable for both channels
- Skew control over two UI with 1/32 UI resolution for each output
- PRBS 2⁷-1, 2¹¹-1, 2¹⁵-1, 2²³-1, 2³¹-1
- 32 Bit user programmable pattern
- Three clock outputs (input clock, input clock divided-by-2 and 16) for trigger purposes
- Built-in frequency counter for input clock
- Control by Ethernet interface
- Low power consumption
- Compact size: 221.4 mm (W) x 50.8 mm (H) x 177 mm (D)

Applications

- Research, Development, Production Tests
- On-Wafer Testing
- CEI-28G
- 100G Ethernet
- Infiniband
- Fibre Channel ®
- High Speed Serial
- Backplane Applications

Block Diagram

Specifications

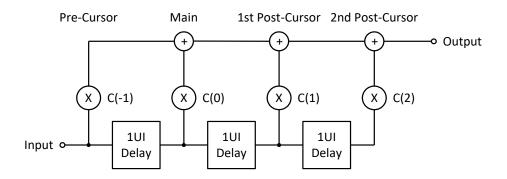
Parameter	Unit	Symbol	Min	Тур	Max	Comment
Data Outputs (Channel 1 and 2, single ended 32 Gbps NRZ)						
Minimum Bit Rate	Gbps				7	
Maximum Bit Rate	Gbps		32			
Output Amplitude	mV	V _{out}	350	430	500	adjustable by up to -6 dB, AC coupled, no pre-emphasis applied
Jitter (RMS)	fs	J _{rms}		450	600	measured at 32 Gbps, on scope display ¹
Jitter (PP)	ps	J _{PP}		2.7	4	measured at 32 Gbps, on scope display ¹
Crossing	%		47	50	53	
Duty Cycle	%		47	50	53	of two consecutive eyes, can be adjusted using BCC
Skew Control	UI		-1		+1	adjustable in 1/32 UI-steps
Connector Type	Ω			50		2.92 mm (K) female
Rise/Fall Time	ps	tr/tf		14	15	20%80%, on scope display

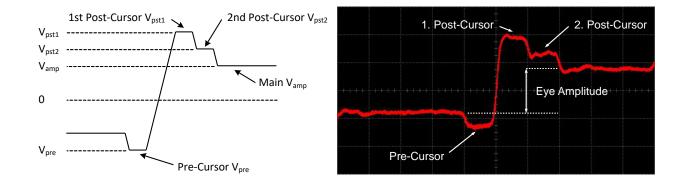
¹ Measured with Agilent 86100A with 70 GHz sampling head and precision time base triggered by Clk or Clk/2 output, using PRBS 2³¹-1

Parameter	Unit	Symbol	Min	Тур	Max	Comment
Clock						
Connector Type Clock Input Clock Output Clock/2 Output Clock/16 Output	Ω			50		2.92 mm (K) female 2.92 mm (K) female 2.92 mm (K) female 2.92 mm (K) female
Clock Input Frequency	GHz	fin_clock	7		32	
Input Level	mV _{pp}	Vin_clock	600		1000	AC coupled
Output Level Clock Clock/2 Clock/16	mV _{pp}	Vout_clock	450 600 300	550 750 400	700 900 550	AC coupled AC coupled AC coupled
Output Frequency Clock Clock/2 Clock/16	GHz GHz GHz	fout_clock	7 3.5 0.438		32 16 2	Input frequency half of input frequency input frequency/16
Pattern						
Output Pattern						ITU-T (CCITT) conform PRBS patterns at a length of 2 ⁷ -1, 2 ¹¹ -1, 2 ¹⁵ -1, 2 ²³ -1 & 2 ³¹ -1 plus user defined pattern
User Pattern Memory Size	bit				32	
Clock Output Pattern						Output can be set to transmit a clock pattern clock/2, clock/4, clock/8, clock/16
General				•	•	
Supply Voltage	v	V _{cc}	11.5	12	12.5	+12 V switching power supply is included
Power Consumption	W	P _{tot}			8	
Height	mm	Н		50.8		
Width	mm	W		221.4		
Depth	mm	D		177		
Weight	g	m			1700	
Operating Temperature	°C	Tambient	15		35	

Graphical User Interface

SHF 12124 A @ Demo					
SHF 12124 A - Bit Pattern Generator @ ready					
Bitrate 30.000 Gbps					
30.000	Gops				
Channel 1	Channel 2				
Pattern Output Presets Pattern 2^31 - 1 ■ Invert On ○ Off Load Store	Pattern Output Presets Pattern 2^31 - 1 Invert 0 n Off Load Store				
Eye Parameters	Eye Parameters				
Skew Duty Cycle	Skew Duty Cycle				
125.2 ps 50.00 % 0 • • • • • • • • • • • • • • •	125.2 ps 50.00 % 0 - 444 PPP 444 PPP 444 PPP V Locked V Locked				
Pre-Emphasis	Pre-Emphasis				
96 mV 96 mV 96 mV	96 mV 96 mV 96 mV				
Pre 1 Amp Post 1 Post 2 0 + 96 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	Pre 1 Amp Post 1 Post 2 0				
Use Fixed Amplitude	Use Fixed Amplitude				
2x 32 Gbps					
SN: 12345 FW: 0.2.22	Factory preset				


User Interface

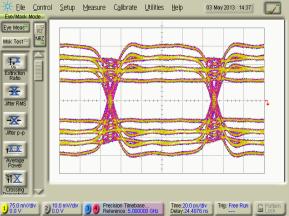

Pre-Emphasis Terms and Definitions

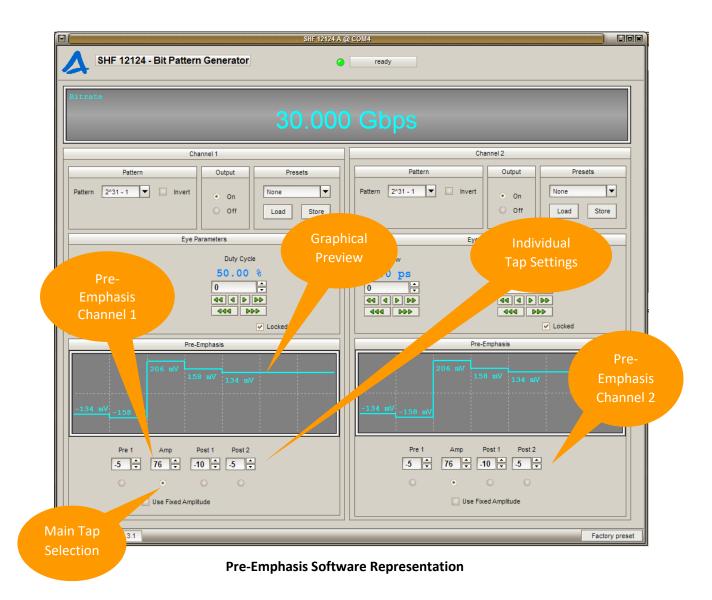
Pre-emphasis based on a finite impulse response (FIR) filter is a way to compensate for high frequency losses in a transmission path. It helps to reduce the inter-symbol interference when the filter coefficients can be set adequately to compensate the imperfections of the channel's impulse response. The basic idea is to boost the high-frequency components while leaving the low frequency components in their original state.

The SHF 12124 B features a 4-Tap FIR filter structure for each channel as depicted in the following picture.

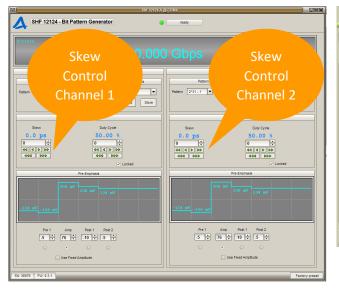
The structure can be used very flexible. Up to four taps can be used and each one is individually controllable. Polarity inversion allows to add or substract the tap from the main signal. Depending on the weight of the taps different configurations as pre- and post-cursors are possible. The most common configuration is probably the use of one pre- and two post-cursors. As depicted in the following picture.

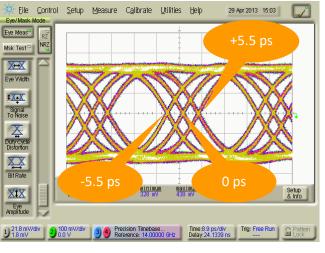
The ratio of the individual taps to the final eye amplitude is given by the following equations:


$$R_{pre}[dB] = 20 \cdot log\left(\frac{|V_{pre}|}{V_{amp}}\right)$$
$$R_{pst1}[dB] = 20 \cdot log\left(\frac{|V_{pst1}|}{V_{amp}}\right)$$
$$R_{pst2}[dB] = 20 \cdot log\left(\frac{|V_{pst2}|}{V_{amp}}\right)$$


The following pictures show how pre- and post-cursor appear in the waveform or eye diagram of the signal.

10 Gbps – One Pre- & Two Post-Cursors


10 Gbps – One Pre- & Two Post-Cursors



Skew Control Function

The skew control function allows adjusting the channel timing relative to each other. As a result, timing delays between the two output channels can be compensated. The skew can be controlled in steps of 1/32 UI. The maximum skew range is 2 UI, i.e. two eye lengths. Since the built-in phase rotator is optimized for operation between 25 Gbps and 30 Gbps step accuracy might degrade at lower and higher bitrates.

Skew Control Software Representation

Skew Control Eye Diagram Representation

User Pattern Function

Besides the five pseudo-random bit sequences and the clock patterns a 32-Bit user pattern can be transmitted from each output. The user pattern can be set using a graphical representation in the user interface.

SHF 12124 A @ COM4					
SHF 12124 - Bit Pattern Generator e ready					
Bitrate 30.000 Gbps					
Channel 1	Channel 2				
Pattern Output Presets Pattern User • On • On • On • Off • Load Store • Eye Parameters • Duty Cycle • 50,00 %	Pattern Output Presets Pattern User Invert Invert Image: State of the state				
Toggle User Pattern Bits Channel 1	0 ● ● ●				
- <u>134 mV</u> - <u>158 mV</u> - <u>158 mV</u>	-134 mV -158 mV -158 mV				
Pre 1 Amp Post 1 Post 2 -5 + 76 + -10 + -5 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pre 1 Amp Post 1 Post 2 5 • 76 • -10 • 5 • 0 • 0 0 Use Fixed Amplitude				
SN: 36976 FW: 0.3.1	Factory preset				

User Pattern Software Representation

29 Apr 2013 14:58

nil -

Setup & Info

C Patte

Duty Cycle Control Function (Channel 1 and 2 only)

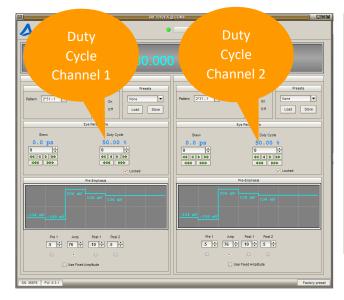
The duty cycle control function allows adjusting the length of consecutive eyes with a range of approximately +/-5% and with a 0.33% resolution.

Eye Meas

Eye Width

t X X X Signal To Noise

Duty Cycle Distortion


Bit Rate

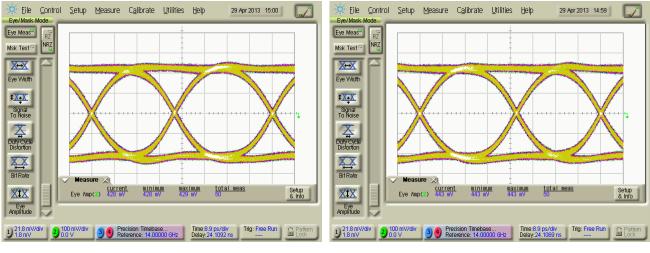
XIX

Eye Amplitude

1 21.8 mV/div 1.8 mV

Msk Test 🔍 📲

Duty Cycle Control Software Representation

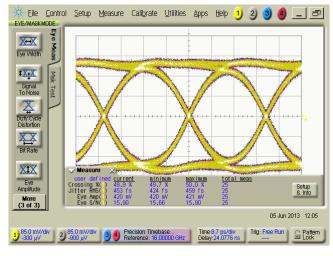

Minimum 437 mV Maximum 438 mV

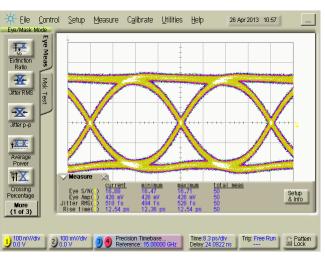
3 Precision Timebase... Time:8.9 ps/div Delay:24.1078 ns ---

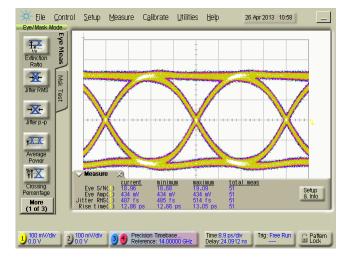
total meas

🔆 Eile Control Setup Measure Calibrate Utilities Help

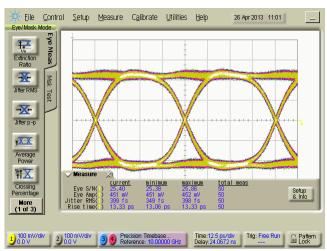
Eye Amp(2) 438 mV


Duty Cycle Control Set to less than 50%

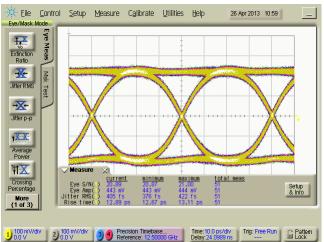

Duty Cycle Control Set to more than 50%


Typical Output Waveforms

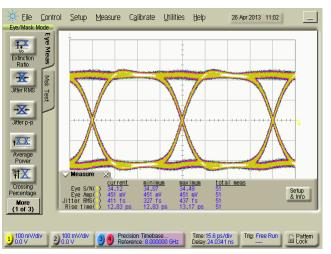
Data Output Signals (Channel 1 and 2 only, Pre-Emphasis completely deactivated)



32 Gbps output eye at maximum output level

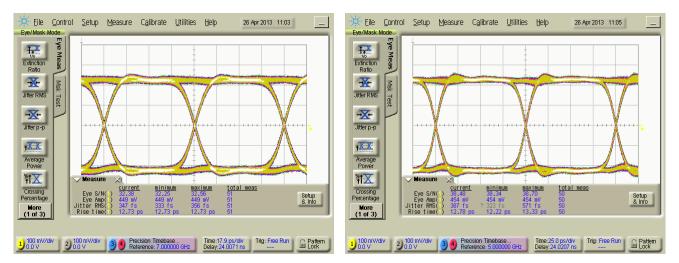



28 Gbps output eye at maximum output level

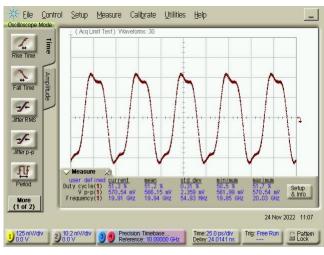


20 Gbps output eye at maximum output level

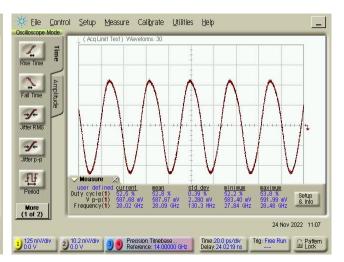
30 Gbps output eye at maximum output level



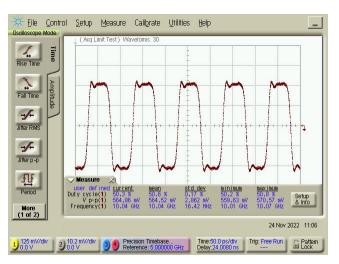
16 Gbps output eye at maximum output level


14 Gbps output eye at maximum output level

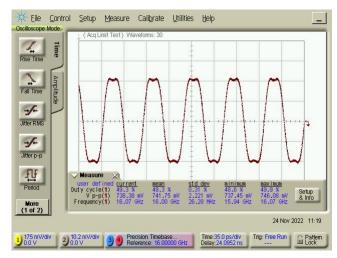
10 Gbps output eye at maximum output level

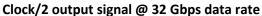


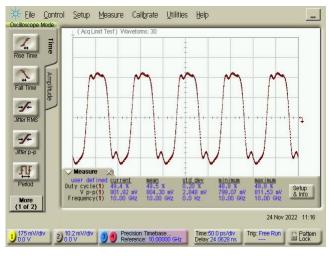
🔆 Eile Control Setup Measure Calibrate Utilities Help -Rise Time Time Fall Time Implitude -/-Jitter RMS -/-Jitter p-p **₽eriod** Duty cycle(1) V p-p(1) Frequency(1) Setup & Info 51.0 % 537.07 mV 31.88 GHz 536.39 mV 31.71 GHz 2.713 mV 135.1 MHz 532.15 mV 31.65 GHz 542.07 mV 32.17 GHz More (1 of 2) 24 Nov 2022 11:08 125 mV/div 2 10.2 mV/div 3 9 Precision Timebase... Time: 17.5 ps/div Trig: Free Run 2 Pattern Lock

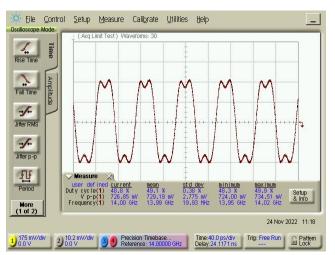

Clock output signal @ 32 Gbps data rate

Clock output signal @ 20 Gbps data rate

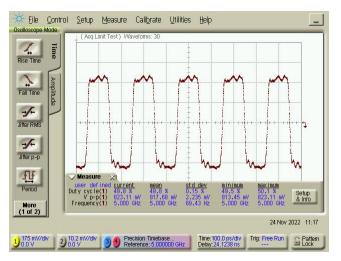

Clock output signal @ 28 Gbps data rate


Clock output signal @ 10 Gbps data rate

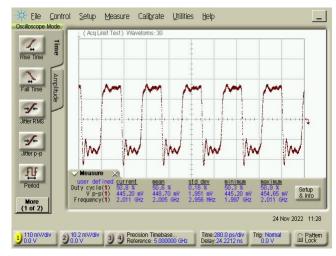

Clock Output Signals



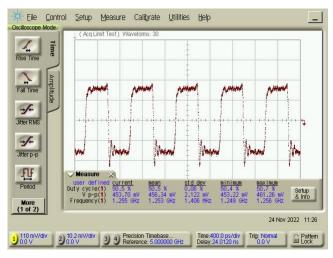
Clock/2 Output Signals

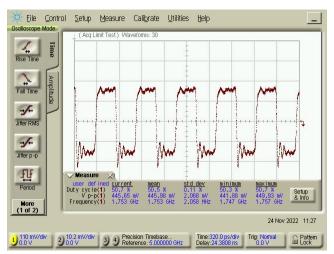


Clock/2 output signal @ 20 Gbps data rate

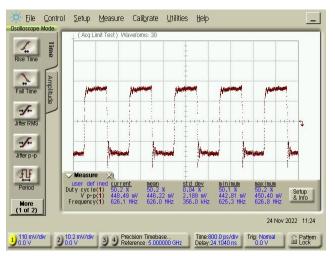


Clock/2 output signal @ 28 Gbps data rate

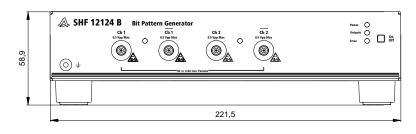

Clock/2 output signal @ 10 Gbps data rate

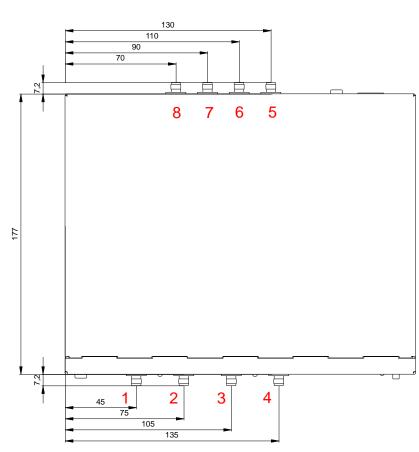


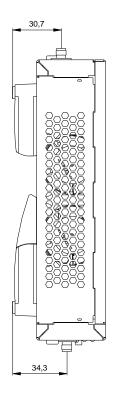
Clock/16 Output Signals

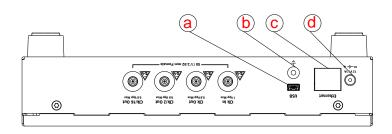


Clock/16 output signal @ 20 Gbps data rate


Clock/16 output signal @ 28 Gbps data rate




Clock/16 output signal @ 10 Gbps data rate



Mechanical Drawing

Pos.	Designation	Connector
1	Channel 1	2.92mm (K) Female
2	Channel 1	2.92mm (K) Female
3	Channel 2	2.92mm (K) Female
4	Channel 2	2.92mm (K) Female
5	Clock Input	2.92mm (K) Female
6	Clock Output	2.92mm (K) Female
7	Clock/2 Output	2.92mm (K) Female
8	Clock/16 Output	2.92mm (K) Female

Pos.	Designation
а	USB
b	GND
С	Ethernet
d	Power Supply

all dimensions in mm

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23 D | 12277 Berlin | Germany

+49 30 772 051 0

sales@shf-communication.com

www.shf-communication.com