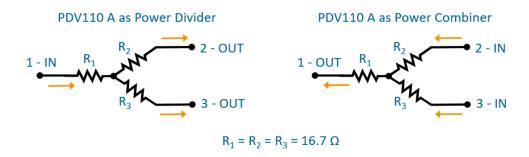


Data Sheet SHF PDV110 A

110 GHz Power Divider


Description

The SHF PDV110 A is a compact, high-performance resistive power divider with a bandwidth exceeding 110 GHz. Output ports (2 and 3) are amplitude and phase-matched.

Fully customizable 1.0 mm connector configurations as well as between series (1.0 mm \leftrightarrow 1.85 mm) configurations are available to meet individual requirements of the customer and to avoid additional adapters in the setup.

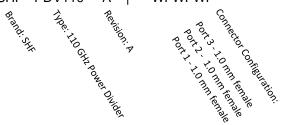
Dedicated mounting holes on the back side allow secure installation on a mounting plate for stable system integration.

The SHF PDV110 A can also be used as a power combiner, using port 2 and 3 as input ports.

Circuit schematic of the PDV110 A.

Features

- · Small and lightweight
- Low loss and low reflection
- Excellent phase and amplitude matching at output ports
- Bi-directional (can be used as divider or combiner)


Configurations

- WFWFWF: All ports 1.0 mm female
- Other configurations on request

Product Code Example

• SHF PDV110 A | WFWFWF

Specifications¹

Absolute Maximum Ratings

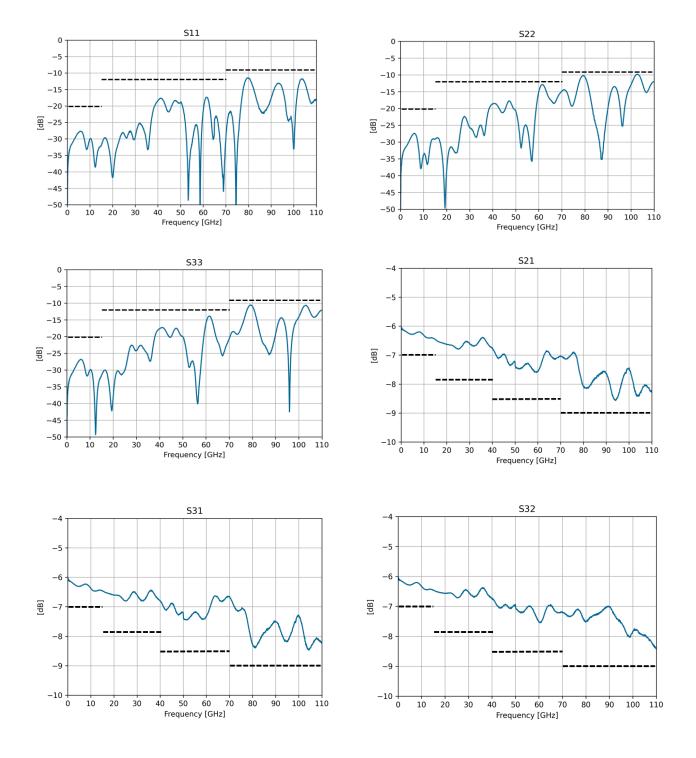
Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Power handling	W	P _{in, max}			1	$P_{in,max}$ represents the overall maximum power that can flow through the PDV110 A. When used as a combiner, each input should not be fed more than $P_{in,max}/2 = 0.5$ W.

Mechanical Characteristics

Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Operating temperature	°C	T _{case}	10		50	
Connectors						1 mm
					42.2	Width
Dimensions	mm				30.1	Length
					9	Height
Weight	g			15.3		

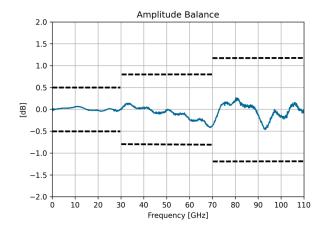
¹ These specifications are valid for the WFWFWF configuration.

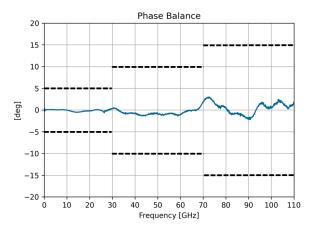
Electrical Characteristics (At 35°C case temperature, unless otherwise specified)


Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Maximum Operating Frequency	GHz	f _{max}	67			
Minimum Operating Frequency		f _{min}			DC	
Input impedance	Ω	R_L		50		
Insertion loss	dB	IL			7	f < 15 GHz
					7.8	15 GHz < f < 40 GHz
					8.5	40 GHz < f < 70 GHz
					9	70 GHz < f < 110 GHz
Return loss	dB	RL	20			f < 15 GHz
			12			15 GHz < f < 40 GHz
			12			40 GHz < f < 70 GHz
			9			70 GHz < f < 110 GHz
Power handling	W	P _{in,max}			1	
	dB					Amplitude balance ² between
						output ports.
Amplitude Balance					±0.5	f < 30 GHz
					±0.8	30 GHz < f < 70 GHz
					±1.2	70 GHz < f < 110 GHz
Phase Balance	deg					Phase balance ³ between output
						ports.
					±5	f < 30 GHz
					±10	30 GHz < f < 70 GHz
					±15	70 GHz < f < 110 GHz

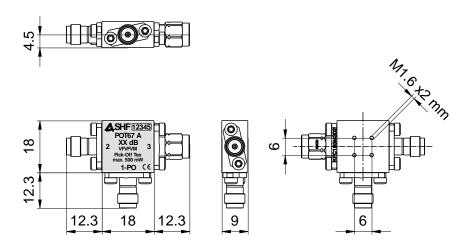
² The amplitude balance is defined as the amplitude difference in dB of the output signals at port 2 and 3. It is calculated as: $|S_{31}|_{dB}$

³ The phase balance is defined as the phase difference in degrees of the output signals at port 2 and 3. It is calculated as: $\varphi_{31} - \varphi_{21}$, where φ_{31} and φ_{21} indicate the unwrapped phase of S₃₁ and S₂₁, respectively.




Typical S-Parameters and Balance Properties⁴

⁴ These typical plots are valid for the WFWFWF configuration.



- Blue solid lines: Measurements
- Black dashed lines: Specifications

Mechanical Drawing

All dimensions in mm

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23 D | 12277 Berlin | Germany

+49 30 772 051 0

sales@shf-communication.com

www.shf-communication.com