SHF Ultra Broadband Amplifiers

Introducing our Range of Amplifiers
SHF has more than 30 years of experience in amplifier design and production. All the MMICs used in our products are our own in-house designs. The outstanding RF performance makes our amplifiers well suited for a wide variety of applications in research & development. This comprises not only optical communications, but also satellite communications, high-speed pulse experiments, data transmission, radar and antenna measurements.

Linear Operation
In some modulation schemes, the optical modulator is driven with an electrical multi-level signal (e.g. for QAM or PAM) or with an analog signal (e.g. for OFDM). Many of SHF amplifiers have been verified for their excellent performance with multi-level and analog signals. These amplifiers are marked blue in the table on page 2.

Ease of Use
With SHF amplifiers, all operating voltages are generated internally. Therefore, only one single power supply is needed. In addition, built-in safety features such as reverse-voltage protection and current regulators eliminate the risk of accidental damage.

Options
Internal bias tees and DC-returns can be added to the input or output ports. Matched pair options are also available for applications where the DUT has to be driven by two ‘identical’ signals in push-pull mode.
Form Factor & Control Functions

SHF amplifiers are available in different styles as indicated by the first letter in the product code.

Each amplifier has a gain control function to enable the amplification to be reduced continuously by up to 3 dB. The SHF “S”, “D” and “F” series even provide a software control to set parameters like gain, output power, bandwidth and crossing.

The “D” series features differential input, single-ended output linear drivers with excellent common mode suppression. The new SHF F840 A is SHF’s first fully differential amplifier.

Product Range

The table shows all the SHF amplifiers with their guaranteed small signal bandwidth and typical gain. For linear applications, the guaranteed 1 dB power compression point indicates the possible output amplitude (note, for binary applications the higher 3 dB compression is a more appropriate value).

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>66 GHz</th>
<th>60 GHz</th>
<th>55 GHz</th>
<th>50 GHz</th>
<th>40 GHz</th>
<th>38 GHz</th>
<th>35 GHz</th>
<th>34 GHz</th>
<th>30 GHz</th>
<th>25 GHz</th>
<th>14 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M804 B 22 dB</td>
<td>M827 B 11 dB</td>
<td>M804 B 22 dB</td>
<td>F840 A 11 dB</td>
<td>S807 C 23 dB</td>
<td>M833 B 11.5 dB</td>
<td>L806 A 29 dB</td>
<td>L810 A 29 dB</td>
<td>D837 B 10 dB</td>
<td>M834 B 15 dB</td>
<td>P100 A 18 dB</td>
</tr>
<tr>
<td></td>
<td>11 dBm</td>
<td>12 dBm</td>
<td>13 dBm</td>
<td>15 dBm</td>
<td>16 dBm</td>
<td>17.5 dBm</td>
<td>18 dBm</td>
<td>23 dBm</td>
<td>1 dB power compression point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our ultra linear amplifiers are marked blue.